分析 由题意知当x∈(0,$\frac{3}{2}$)时,f(x)=sin(πx),求出f(x)=0的根,再由条件和奇函数的性质,求出一个周期[-$\frac{3}{2}$,$\frac{3}{2}$]内函数零点的个数,根据f(x)是定义域为R的周期为3函数,求得f($\frac{3}{2}$)=0,根据周期性进行求出在区间[0,6]上的零点即可.
解答 解:由题意得当x∈(0,$\frac{3}{2}$)时,f(x)=sin(πx),
令f(x)=0,则sinπx=0,解得x=1.
∵函数f(x)是周期为3的周期函数,
可得f(x+3)=f(x),
有f(-$\frac{3}{2}$)=f($\frac{3}{2}$),
又函数f(x)是定义域为R的奇函数,
可得f(-$\frac{3}{2}$)=f($\frac{3}{2}$)=-f($\frac{3}{2}$),
求得f($\frac{3}{2}$)=0,
可得在区间[-$\frac{3}{2}$,$\frac{3}{2}$]上有f(-1)=f(1)=f(-$\frac{3}{2}$)=f($\frac{3}{2}$)=0,且f(0)=0,
∵函数f(x)是周期为3的周期函数,
则方程f(x)=0在区间[0,6]上的解有0,1,$\frac{3}{2}$,2,3,4,$\frac{9}{2}$,5,6,共9个.
故答案为:9.
点评 本题考查了函数的周期性和奇偶性的综合应用,关键结论“若奇函数经过原点,则必有f(0)=0”应用,这个关系式大大简化了解题过程,要注意在解题中使用.如果本题所给区间为开区间,则答案为7个,若区间为半开半闭区间,则答案为8个,故要注意对端点的分析.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{16}$,$\frac{1}{2}$) | B. | [0,$\frac{1}{2}$) | C. | [-$\frac{1}{16}$,+∞) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| A | B | 合计 | |
| 认可 | |||
| 不认可 | |||
| 合计 |
| P(x2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com