精英家教网 > 高中数学 > 题目详情
已知命题p:?x∈(0,+∞),x+
1
x
>a,则”a<
3
”是”命题p为真命题”的
(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
分析:我们可以分别求出命题P对应的 a的范围,及命题“a<
3
”为真时对应的 a的范围,比较后,根据谁小谁充分,谁大谁必要的原则进行判断.
解答:解:已知本题中命题P,得:a<x+
1
x
的最小值即可,
即a<2;
而命题“a<
3

所以“a<
3
”?q,反之不成立,
故选A.
点评:本题考查的知识点是充要条件的定义,我们求出两个命题对应的平面区域,比较后结合谁小谁充分,谁大谁必要的原则,易得结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:?x∈R,使x2-x+a=0;命题Q:函数y=
ax-1
ax2+ax+1
的定义域为R.
(1)若命题P为真,求实数a的取值范围;
(2)若命题Q为真,求实数a的取值范围;
(3)如果P∧Q为假,P∨Q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x2+2x+
1
2
<0
;命题q:?x∈R,sinx-cosx=
2
.则下列判断正确的是(  )
A、p是真命题
B、q是假命题
C、¬P是假命题
D、¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x=2k+1(k∈Z),命题q:x=4k-1(k∈Z),则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+2ax+a≤0,则命题p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命题p为假命题,则实数a的取值范围是
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使2x2+(k-1)x+
1
2
<0;命题q:方程
x2
9-k
-
y2
k-1
=1
表示双曲线.若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

同步练习册答案