分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)由(1)求出lnx<x-1,设F(x)=xlnx-x+1,x>1,根据函数的单调性求出F(x)>0,证明结论即可.
解答 解:(1)函数f(x)=lnx-x+1的导数为f′(x)=$\frac{1}{x}$-1,
由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.
即有f(x)的增区间为(0,1);减区间为(1,+∞);
(2)证明:当x∈(1,+∞)时,
由(1)可得f(x)=lnx-x+1在(1,+∞)递减,
可得f(x)<f(1)=0,即有lnx<x-1;
设F(x)=xlnx-x+1,x>1,F′(x)=1+lnx-1=lnx,
当x>1时,F′(x)>0,可得F(x)递增,
即有F(x)>F(1)=0,
即有xlnx>x-1,则原不等式成立;
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 外切 | B. | 相离 | C. | 相交 | D. | 内切 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{3}{7}$ | C. | $\frac{5}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $\frac{{5\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com