精英家教网 > 高中数学 > 题目详情
5.已知圆${C_1}:{x^2}+{y^2}+4x+3y+2=0$与圆${C_2}:{x^2}+{y^2}+2x+3y+1=0$,则圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

分析 计算两圆的圆心和半径,计算圆心距,根据圆心距与半径的大小关系得出结论.

解答 解:圆C1的圆心为C1(-2,-$\frac{3}{2}$),半径为r1=$\frac{1}{2}$$\sqrt{16+9-8}$=$\frac{\sqrt{17}}{2}$,
圆C2的圆心为C2(-1,-$\frac{3}{2}$),半径为r2=$\frac{1}{2}$$\sqrt{4+9-4}$=$\frac{3}{2}$.
两圆圆心距为d=$\sqrt{1+0}$=1,
∴r1-r2<d<r1+r2
∴圆C1与圆C2相交.
故选:C.

点评 本题考查了圆的方程,圆与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设各项均为正数的数列{an}的前n项和为Sn,且对任意的n∈N*,都有2$\sqrt{S_n}={a_n}$+1.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1an,求数列{bn}的前n项和Tn
(3)令cn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$,求$\sum_{i=1}^n{[{({\sqrt{2n+1}+1}){c_i}}]}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}满足a3=7,a5+a7=26,若${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$(n∈N*),则数列{bn}的前10项和S10=$\frac{10}{69}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)试讨论f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照 分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)已知满意度评分值在内的男生数与女生数的比为2:1,若在满意度评分值为的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图△O′A′B′是水平放置的△OAB的直观图,则△OAB的面积为6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设i为虚数单位,复数 z1=a-3i,z2=1+2i,若z1+z2是纯虚数,则实数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}的前n项和为Sn,若a2=4,S4=22,an=28,则n=(  )
A.3B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=lnx-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,lnx<x-1<xlnx.

查看答案和解析>>

同步练习册答案