【题目】在平面直角坐标系中,已知圆经过椭圆的焦点.
(1)求椭圆的标准方程;
(2)设直线交椭圆于两点,为弦的中点,,记直线的斜率分别为,当时,求的值.
【答案】(Ⅰ)(Ⅱ)
【解析】
试题分析:(Ⅰ)先确定交点位置:在轴上,再根据圆与轴交点得等量关系:;又,所以(Ⅱ)设,表示,然后根据直线与椭圆方程联立方程组,结合韦达定理表示中点坐标,并利用条件化简:,,最后代入并利用条件化简得
试题解析:解:(1)因,所以椭圆的焦点在轴上,
又圆经过椭圆的焦点,所以椭圆的半焦距, ……………3分
所以,即,所以椭圆的方程为. ……………6分
(2)方法一:设,,,
联立,消去,得,
所以,又,所以,
所以,, ……………10分
则. …………14分
方法二:设,,, 则,
两式作差,得,
又,,∴,∴,
又,在直线上,∴,∴,①
又在直线上,∴,②
由①②可得,. ……………10分
以下同方法一.
科目:高中数学 来源: 题型:
【题目】下列各式中,所得数值最小的是( )
A.sin50°cos39°﹣sin40°cos51°
B.﹣2sin240°+1
C.2sin6°cos6°
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(sinx+ cosx)2﹣2.
(1)当x∈[0, ]时,求函数f(x)的单调递增区间;
(2)若x∈[﹣ , ],求函数g(x)= f2(x)﹣f(x+ )﹣1的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
(1) 求证:直线DE∥平面A1C1F;
(2) 求证:平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长方体ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是偶函数,且f(x+ )=f( ﹣x),当﹣ ≤x≤0时,f(x)=( )x﹣1,记an=f( ),n∈N+ , 则a2046的值为( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com