精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC A1B1C1中,DE分别为ABBC的中点,点F在侧棱B1B上,且B1DA1FA1C1A1B1

(1) 求证:直线DE∥平面A1C1F

(2) 求证:平面B1DE⊥平面A1C1F

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)由三角形中位线性质及棱柱性质得DEA1C1再根据线面平行判定定理得结论(2)先由直三棱柱性质得A1A⊥平面A1B1C1A1AA1C1又已知A1C1A1B1,所以由线面垂直判定定理得A1C1⊥平面ABB1A1,即A1C1B1D再由已知B1DA1F,结合线面垂直判定定理得B1D⊥平面A1C1F最后根据面面垂直判定定理得平面B1DE⊥平面A1C1F

试题解析:证明:(1)在直三棱柱ABC A1B1C1中,A1C1AC

ABC中,∵DE分别为ABBC的中点,

DEAC,于是DEA1C1

又∵DE平面A1C1FA1C1平面A1C1F

∴直线DE∥平面A1C1F

(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1

A1C1平面A1B1C1A1AA1C1

又∵A1C1A1B1AA1平面ABB1A1A1B1平面ABB1A1A1AA1B1A1

A1C1⊥平面ABB1A1

B1D平面ABB1A1A1C1B1D

又∵B1DA1FA1C1平面A1C1FA1F平面A1C1FA1C1A1FA1

B1D⊥平面A1C1F

B1D平面B1DE,∴平面B1DE⊥平面A1C1F

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人准备报考某大学,假设甲考上的概率为 ,甲,丙两都考不上的概率为 ,乙,丙两都考上的概率为 ,且三人能否考上相互独立.
(1)求乙、丙两人各自考上的概率;
(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax在(﹣1,0)上是增函数.
(1)求实数a的取值范围A;
(2)当a为A中最小值时,定义数列{an}满足:a1∈(﹣1,0),且2an+1=f(an),用数学归纳法证明an∈(﹣1,0),并判断an+1与an的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的导函数,则不等式exf(x)>ex+2(其中e为自然对数的底数)的解集为(
A.{x|x>0}
B.{x|x<0}
C.{x|x<﹣1或x>1}
D.{x|x<﹣1或0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆经过椭圆的焦点.

1)求椭圆的标准方程;

2)设直线交椭圆两点,为弦的中点,,记直线的斜率分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的不等式上恒成立,求的取值范围;

(2)设函数,若上有两个不同极值点,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为感谢全体员工的辛勤劳动,决定在年终答谢会上,通过摸球方式对全公司1000位员工进行现金抽奖。规定:每位员工从装有4个相同质地球的袋子中一次性随机摸出2个球,这4个球上分别标有数字,摸出来的两个球上的数字之和为该员工所获的奖励额(单位:元)。公司拟定了以下三个数字方案:

方案

100

100

100

500

100

100

500

500

200

200

400

400

(Ⅰ)如果采取方案一,求的概率;

(Ⅱ)分别计算方案二、方案三的平均数和方差,如果要求员工所获的奖励额相对均衡,方案二和方案三选择哪个更好?

(Ⅲ)在投票选择方案二还是方案三时,公司按性别分层抽取100名员工进行统计,得到如下不完整的列联表。请将该表补充完整,并判断能否有90%的把握认为“选择方案二或方案三与性别有关”?

方案二

方案三

合计

男性

12

女性

40

合计

82

100

附:

0.15

0.10

0.05

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|2x+ |+a|x |

)当a=﹣1时,解不等式fx≤3x

)当a=2时,若关于x的不等式2fx+1|1﹣b|的解集为空集,求实数b的取值范围.

查看答案和解析>>

同步练习册答案