精英家教网 > 高中数学 > 题目详情
19.某厂通过技术改造降低了产品A对重要原材料G的消耗,如表提供了该厂技术改造后生产产品A的过程记录的产量x(吨)与原材料G相应的消耗量y(吨)的几组对照数据:
 x 3 4 5 6
 y 1.6 2.2 3.0 3.4
(1)请在图a中画出如表数据的散点图;
(2)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,预测生产50吨产品A需要消耗原材料G多少吨?参考公式:最小二乘法求线性回归方程
系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

分析 (1)以x为横坐标,y为纵坐标描点;
(2)根据线性回归系数公式计算回归系数,得出回归方程;
(3)把x=50代入线性回归方程得出估计值.

解答 解:(1)作出散点图如下:
(2)$\overline{x}$=$\frac{3+4+5+6}{4}$=4.5,$\overline{y}$=$\frac{1.6+2.2+3.0+3.4}{4}$=2.55.
$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=3×1.6+4×2.2+5×3.0+6×3.4=49,$\sum_{i=1}^{4}{{x}_{i}}^{2}$=32+42+52+62=86,
∴$\stackrel{∧}{b}$=$\frac{49-4×4.5×2.55}{86-4×4.{5}^{2}}$=0.62,$\stackrel{∧}{a}$=2.55-0.62×4.5=-0.24.
∴y关于x的线性回归方程为$\stackrel{∧}{y}$=0.62x-0.24.
(3)当x=50时,$\stackrel{∧}{y}$=0.62×50-0.24=30.76.
答:预测生产50吨产品A需要消耗原材料G30.76吨.

点评 本题考查了线性回归方程的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.下表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)由此推测当婴儿生长满五个月时的体重为多少?
(参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n•{\overline{x}}^{2}}$  $\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{n}{x}_{i}{y}_{i}=27.5$)
 x0123
 y33.54.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示双曲线;q:“关于x的方程x2-mx+1=0没有实数根”.
若“¬p”和“p∨q”都是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线E:y=mx2(m>0),圆C:x2+(y-2)2=4,点F是抛物线E的焦点,点N(x0,y0)(x0>0,y0>0)为抛物线E上的动点,点M(2,-$\frac{1}{2}$),线段MF恰被抛物线E平分.
(1)求m的值;
(2)若y0>4,过点N向圆C作切线,求两条切线与x轴围成的三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=-2(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{lo{g}_{2}(2x-1)}$的定义域是(  )
A.($\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.($\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c为△ABC的三个内角的对边,向量$\overrightarrow{m}$=(2cosB,1),$\overrightarrow{n}$=(1-sinB,sin2B-1),$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求∠B的大小;
(2)若a=1,c=2,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于x的方程x2-(2a+l)x+a2=0有实数根的一个充分不必要条件是(  )
A.a>1B.a>-2C.a≥-$\frac{1}{4}$D.a≥-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图所示,某公园计划用鹅卵石铺成两条交叉的“健康石道”(线段AD和CE),并在这两条“健康石道”两端之间建设“花卉长廊”(线段AC和ED),以供市民休闲健身.已铺设好的部分BD=20m,ED=10$\sqrt{6}$m,∠BED=45°(△BDE为锐角三角形).由于设计要求,未铺设好的部分AB和BC的总长只能为40m,则剩余的“花卉长廊”(线段AC)最短可以是20m.

查看答案和解析>>

同步练习册答案