精英家教网 > 高中数学 > 题目详情
18.已知m∈R,复数z=$\frac{m(m+2)}{m-1}$+(m2+2m-3)i,当m为何值时,
(1)z为实数?
(2)z为虚数?
(3)z为纯虚数?

分析 (1)利用“z为实数等价于z的虚部为0”计算即得结论;
(2)利用“z为虚数等价于z的实部为0”计算即得结论;
(3)利用“z为纯虚数等价于z的实部为0且虚部不为0”计算即得结论.

解答 解:(1)z为实数?m2+2m-3=0且m-1≠0,
解得:m=-3;
(2)z为虚数?m(m+2)=0且m-1≠0,
解得:m=0或m=-2;
(3)z为纯虚数?m(m+2)=0、m-1≠0且m2+2m-3≠0,
解得:m=0或m=-2.

点评 本题考查复数的基本概念,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.曲线x3-6x2-3y-1=0在点(1,-2)处的切线方程为3x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等比数列{an}中,已知a2=2,a5=16
(1)求数列{an}的通项;
(2)若等差数列{bn},b1=a5,b8=a2,求数列{bn}前n项和Sn,并求Sn最大值和相应的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数y=sinx图象上各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变)后,再将图象向左平移$\frac{π}{4}$个单位,那么所得图象的一条对称轴方程为(  )
A.$x=-\frac{π}{2}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{8}$D.$x=\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow{AB}$=$\overrightarrow a+5\overrightarrow b$,$\overrightarrow{BC}$=$-2\overrightarrow a+8\overrightarrow b$,$\overrightarrow{CD}=3({\overrightarrow a-\overrightarrow b})$,且$\overrightarrow a,\overrightarrow b$不共线,则(  )
A.A.B.D三点共线B.A.B.C三点共线C.B.C.D三点共线D.A.C.D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数a1,a2,a3,a4,a5构成等比数列,其中a1=2,a5=32,则公比q的值为(  )
A.2B.-2C.2或-2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.集合A={x|x=in,n∈N}的子集的个数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校有一个班级,设变量x是该班同学的姓名,变量y是该班同学的学号,变量z是该班同学的身高,变量w是该班同学某一门课程的考试成绩,则下列选项中一定正确的是((  )
A.y是x的函数B.z是y的函数C.w是z的函数D.w是x的函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线y=5$\sqrt{x}$,求:
(1)曲线上与直线y=2x-4平行的切线方程;
(2)求过点P(0,5)且与曲线相切的切线方程.

查看答案和解析>>

同步练习册答案