精英家教网 > 高中数学 > 题目详情
12.若函数h(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0,h(x0)),记函数h(x)的导函数为g(x),则有g′(x0)=0,设函数f(x)=x3-3x2+2,则f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4032}{2017}$)+f($\frac{4033}{2017}$)=0.

分析 求出f(x)的对称点,利用f(x)的对称性得出答案.

解答 解:f′(x)=3x2-6x,f″(x)=6x-6,
令f″(x)=0得x=1,
∴f(x)的对称中心为(1,0),
∵$\frac{1}{2017}+\frac{4033}{2017}$=$\frac{2}{2017}+\frac{4032}{2017}$=…=$\frac{2016}{2017}+\frac{2018}{2017}$=2,
∴f($\frac{1}{2017}$)+f($\frac{4033}{2017}$)=f($\frac{2}{2017}$)+f($\frac{4032}{2017}$)=…=f($\frac{2016}{2017}$)+f($\frac{2018}{2017}$)=0,
又f($\frac{2017}{2017}$)=f(1)=0
∴f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4032}{2017}$)+f($\frac{4033}{2017}$)=0.
故答案为:0.

点评 本题考查了函数的对称性判断与应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若z=4+3i,则$\frac{\overline z}{|z|}$=$\frac{4}{5}$-$\frac{3}{5}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,则$2\overrightarrow a-3\overrightarrow b$的坐标是(  )
A.(6,-5)B.(6,7)C.(6,1)D.(6,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(p>0)的交点为F,准线为l,过点F的直线与抛物线交于M,N两点,若MR⊥l,垂足为R,且∠NRM=∠NMR,则直线MN的斜率为(  )
A.±8B.±4C.±2$\sqrt{2}$D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有(  )
A.20种B.15种C.10种D.4种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合A={x|y=$\sqrt{lg(1-x)}$},B={x|x≥-1},则A∩B等于(  )
A.[-1,0]B.[-1,1)C.(-1,+∞)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,最长棱的长度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.6D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且满足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,数列{log3bn}{n∈N*}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(II)令cn=(-1)n•$\frac{n}{2}$+3n,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的渐近线与抛物线y=x2+$\frac{1}{4}$相切,则C的离心率为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案