精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,正数数列{an}满足a1=1,f(an+an+1)-g(an+1an+an2)=1.
(1)求{an}的通项公式;
(2)若{an}的前n项和为Sn,求Sn
分析:先根据函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,判断b=0,c=0进而可得函数f(x)和g(x)的解析式,进而根据f(an+an+1)-g(anan+1+an2)=1求得
an+1
an
=
2
3
进而判断出数列{an}是以1为首项,
2
3
为公比的等比数列,则数列的通项公式可得,进而根据等比数列的求和公式求得Sn
解答:解:∵函数f(x)=3x2+bx+1是偶函数,g(x)=5x+c是奇函数,
∴b=0,c=0
∴f(x)=3x2+1 g(x)=5x
∵f(an+an+1)-g(anan+1+an2)=1
∴整理得(3an+1-2an)(an+an)=0
∵正数数列
∴3an+1-2an=0,即
an+1
an
=
2
3

∴数列{an}是以1为首项,
2
3
为公比的等比数列
∴通项公式an=(
2
3
n-1
∴Sn=3[1-(
2
3
n]
点评:本题主要考查了用数列的递推式求得数列的通项公式和求和问题.解题的关键是通过函数解析式找到an+1和an的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案