分析 (I)通过2(a5+S5)=a4+S4+a6+S6化简得2q2-3q+1=0,进而计算可得结论;
(II)通过bn=$\frac{3}{4}$n•$\frac{1}{{2}^{n}}$,写出Tn、$\frac{1}{2}•$Tn的表达式,利用错位相减法计算即得结论.
解答 解:(I)由题可知:2(a5+S5)=a4+S4+a6+S6,
化简得:2a6-3a5+a4=0,
∴2q2-3q+1=0,
解得:q=$\frac{1}{2}$或q=1(舍),
∴an=$\frac{1}{2}•$$\frac{1}{{2}^{n-1}}$=$\frac{1}{{2}^{n}}$;
(II)依题意bn=$\frac{n({a}_{n}+{a}_{n+1})}{2}$=$\frac{3}{4}$n•$\frac{1}{{2}^{n}}$,
∴${T_n}=\frac{3}{4}[1×\frac{1}{2}+2×{(\frac{1}{2})^2}+3×{(\frac{1}{2})^3}+…+(n-1){(\frac{1}{2})^{n-1}}+n×{(\frac{1}{2})^n}]$,
$\frac{1}{2}{T_n}=\frac{3}{4}[1×{(\frac{1}{2})^2}+2×{(\frac{1}{2})^3}+3×{(\frac{1}{2})^4}+…+(n-1){(\frac{1}{2})^n}+n×{(\frac{1}{2})^{n+1}}]$,
两式相减得:$\frac{1}{2}{T_n}=\frac{3}{4}[\frac{1}{2}+{(\frac{1}{2})^2}+{(\frac{1}{2})^3}+…+{(\frac{1}{2})^n}-n{(\frac{1}{2})^{n+1}}]$
=$\frac{3}{4}$•($\frac{1}{2}$•$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n+1}}$),
∴Tn=$\frac{3}{2}$(1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$).
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1或\sqrt{3}$ | B. | $2或\sqrt{3}$ | C. | $\sqrt{3}-1$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ②③④ | C. | ①③④ | D. | ①②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 假设a,b,c都大于1 | B. | 假设a,b,c中至多有一个大于1 | ||
| C. | 假设a,b,c都不大于1 | D. | 假设a,b,c中至多有两个大于1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com