精英家教网 > 高中数学 > 题目详情
5.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$),则
①y=f(x)的最大值为$\sqrt{2}$;
②y=f(x)的最小正周期是π;
③y=f(x)在区间[-$\frac{π}{12}$,$\frac{13π}{24}}$]上是减函数;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,将与已知函数的图象重合.
其中正确的是(  )
A.①②③B.②③④C.①③④D.①②④

分析 由诱导公式和整体思想化简可得f(x)=$\sqrt{2}$cos(2x-$\frac{π}{12}$),逐个选项验证可得.

解答 解:化简可得f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)
=cos(2x+$\frac{π}{6}$-$\frac{π}{2}$)+cos(2x+$\frac{π}{6}$)
=sin(2x+$\frac{π}{6}$)+cos(2x+$\frac{π}{6}$)
=$\sqrt{2}$cos(2x+$\frac{π}{6}$-$\frac{π}{4}$)
=$\sqrt{2}$cos(2x-$\frac{π}{12}$)
①y=f(x)的最大值为$\sqrt{2}$,正确;
②y=f(x)的最小正周期T=$\frac{2π}{2}$=π,正确;
③由2kπ≤2x-$\frac{π}{12}$≤2kπ+π可得kπ+$\frac{π}{24}$≤x≤kπ+$\frac{13π}{24}$,
∴函数的单调递减区间为[kπ+$\frac{π}{24}$,kπ+$\frac{13π}{24}$](k∈Z)
∴y=f(x)在区间[-$\frac{π}{12}$,$\frac{13π}{24}}$]上是减函数,错误;
④将函数y=$\sqrt{2}$cos2x的图象向右平移$\frac{π}{24}$个单位后,
得到函数y=$\sqrt{2}$cos2(x-$\frac{π}{24}$)=$\sqrt{2}$cos(2x-$\frac{π}{12}$)即已知函数的图象,故正确.
故选:D

点评 本题考查两角和与差的三角函数公式,涉及三角函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是(  )
A.(-∞,$\frac{51}{8}$]B.(-∞,3]C.[$\frac{51}{8}$,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知0<x<$\frac{π}{4},sinx+cosx=\frac{7}{5}$,求值:
(1)sinx-cosx;
(2)2sin2x+cos2x-3sinxcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公比q不为1的等比数列{an}的首项${a_1}=\frac{1}{2}$,前n项和为Sn,且a4+S4,a5+S5,a6+S6成等差数列.
(1)求数列{an}的通项公式;
(2)对n∈N+,在an与an+1之间插入n个数,使这n+2个数成等差数列,记插入的这n个数的和为{bn},求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图是导函数y-f′(x)的图象,那么函数的极大值点为x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,A,B,C的对边分别为a,b,c且2c•cos2$\frac{A}{2}$=b+c.
(1)判断△的形状,并求sinA+sinB的取值范围;
(2)如图,三角形ABC的顶点A,C分别在x轴,y轴的非负半轴上运动,AC=2,BC=1,求O,B间距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.实数m为何值时,复数z=(m2+5m+6)+(m2-2m-15)i对应的点在:
(1)x轴上方;   
(2)直线x+y+7=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数g(x)=x2-3;f(x)是定义在  (-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=log2x;那么函数y=f(x)•g(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别是A、B,直线x=m交椭圆于上下P、Q两点,则直线AQ与直线PB的交点M的轨迹方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(x≠0,y≠0).

查看答案和解析>>

同步练习册答案