精英家教网 > 高中数学 > 题目详情
5.复数(1+i)+(3-2i)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:(1+i)+(3-2i)=4-i在复平面内对应的点(4,-1)位于第四象限,
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{3}$,$\frac{1}{2}$),且椭圆E的离心率为$\frac{\sqrt{3}}{2}$
(1)求椭圆E的方程;
(2)是否存在以A(0,b)为直角顶点且内接于椭圆E的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知cos(π+α)=$\frac{1}{3}$,π<α<2π,则sinα的值是(  )
A.-$\frac{2\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式$2{S_n}=\frac{9}{4}{a_n}-\frac{9}{4}$.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式是${b_n}=\frac{1}{{({{log}_3}{a_n}-1)({{log}_3}{a_n}+1)}}$,前n项和为Tn,求证:对于任意的正整数n,总有${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题是真命题的是(  )
A.有两个面相互平行,其余各面都是平行四边形的多面体是棱柱
B.正四面体是四棱锥
C.有一个面是多边形,其余各面都是三角形的多面体叫做棱锥
D.正四棱柱是平行六面体

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各数中最小的是(  )
A.111111(2)B.222(5)C.1000(4)D.65

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,A、B、C的对边分别为a、b、c且sinC+cosC=1-sin$\frac{C}{2}$.
①求cosC;  
 ②若a2+b2=2(2a+$\sqrt{7}$b)-11,求c边.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x,y,z都是正整数,且x2+y2=z2
(1)求证:x,y,z不可能都是奇数;
(2)求证:当n∈N,n>2时,xn+yn<zn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l与椭圆$\frac{x^2}{4}$+y2=1相交于A?B两点,并且线段AB的中点为M(1,$\frac{1}{2}}$).
(1)求直线l的方程(用一般式表示);
(2)求弦长|AB|.

查看答案和解析>>

同步练习册答案