分析 ①根据三角函数的倍角公式进行化简即可.
②由a2+b2=2(2a+$\sqrt{7}$b)-11利用配方法得a=2,b=$\sqrt{7}$,然后利用余弦定理进行求解即可.
解答 解:①∵sinC+cosC=1-sin$\frac{C}{2}$,
∴2sin$\frac{C}{2}$cos$\frac{C}{2}$+1-2sin2$\frac{C}{2}$=1-sin$\frac{C}{2}$,
即2sin$\frac{C}{2}$(sin$\frac{C}{2}$-cos$\frac{C}{2}$)=sin$\frac{C}{2}$,
∵sin$\frac{C}{2}$≠0,∴sin$\frac{C}{2}$-cos$\frac{C}{2}$=$\frac{1}{2}$,
平方得1-sinC=$\frac{1}{4}$,则sinC=$\frac{3}{4}$,
∵$\frac{π}{4}$<$\frac{C}{2}$<$\frac{π}{2}$,∴$\frac{π}{2}$<C<π,
则cosC=-$\frac{\sqrt{7}}{4}$.
②若a2+b2=2(2a+$\sqrt{7}$b)-11,
即(a-2)2+(b-$\sqrt{7}$)2=0,
则a-2=0且b-$\sqrt{7}$=0,则a=2,b=$\sqrt{7}$,
则c2=4+7-2×2×$\sqrt{7}$×(-$\frac{\sqrt{7}}{4}$)=18,
则c=$\sqrt{18}$=3$\sqrt{2}$.
点评 本题主要考查解三角形的应用,根据三角函数的倍角公式以及余弦定理是解决本题的关键.考查学生的计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+y2=4 | B. | x2+(y-1)2=4 | C. | (x+1)2+y2=4 | D. | x2+(y+1)2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinθ-cosθ | B. | cosθ-sinθ | C. | ±(sinθ-cosθ) | D. | sinθ+cosθ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com