精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对边分别是a、b、c,且cosA=
1
3

(Ⅰ)求cos(B+C)+cos2A的值:
(Ⅱ)若a=2
2
,b+c=4,求△ABC的面积.
考点:余弦定理,两角和与差的余弦函数
专题:解三角形
分析:(Ⅰ)原式利用诱导公式及二倍角的余弦函数公式化简,将cosA的值代入计算即可求出值;
(Ⅱ)利用余弦定理列出关系式,将a,cosA的值代入,利用完全平方公式变形,求出bc的值,即可确定出三角形面积.
解答: 解:(Ⅰ)∵cosA=
1
3

∴cos(B+C)+cos2A=-cosA+2cos2A-1=-
1
3
-
7
9
=-
10
9

(Ⅱ)∵a=2
2
,cosA=
1
3
,即sinA=
1-cos2A
=
2
2
3

∴由余弦定理得:a2=b2+c2-2bccosA,即8=b2+c2-
2
3
bc=(b+c)2-
8
3
bc=16-
8
3
bc,
整理得:bc=3,
则S△ABC=
1
2
bcsinA=
1
2
×3×
2
2
3
=
2
点评:此题考查了余弦定理,三角形面积公式,以及二倍角的余弦函数公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图的程序的输出结果为(  )
A、1,1B、2,0
C、2,1D、1,-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an+1=2an+1,且a1=1.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an}的通项公式;
(3)求数列{n•(an+1)}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过点A(-3,0),且与圆C:(x-3)2+y2=64内切的圆的圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表.
月收入(单位百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(1)由如表统计数据求所示2乘2列联表中的a,b,c,d的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
月收入低于55百元的人数月收入不低于55百元的人数合计
赞成a      b
不赞成       c      d
合计 50
(2)若对在[15,25),[25,35)的被调查中各随机选取一人进行追踪调查,记选中的2人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k)0.15    0.10    0.0   0.025   0.01
k2.072    2.706    3.841  5.024  6.635 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
4
x
+clnx,其中c∈R,
(1)当c=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)若f(x)有两个极值点x1和x2,记过点A(x1,f(x1))、B(x2,f(x2))的直线的斜率为k,问是否存在c,使得k=2+c?若存在,求出c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C以双曲线
x2
36
-
y2
64
=1的焦点F1、F2为顶点,顶点为焦点.
(1)求椭圆的标准方程;
(2)若椭圆上存在一点P满足∠F1PF2=60°,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,y>0,且x+y=1,求证(1+
1
x
)(1+
1
y
)≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点为O(0,0),焦点在x轴上,且过点(2,4),
(1)求抛物线的标准方程;
(2)与圆(x+2)2+y2=4相切的直线l:x=ky+t交抛物线于不同的两点M,N.若抛物线上一点C满足
OC
=λ(
OM
+
ON
)(λ>0),求λ的取值范围.

查看答案和解析>>

同步练习册答案