精英家教网 > 高中数学 > 题目详情
己知tanα=3,求
sinα-cosα
3sinα+4cosα
的值.
考点:三角函数的化简求值
专题:三角函数的求值
分析:把所求的式子分子分母都除以cosα,利用同角三角函数间的基本关系化为关于tanα的关系式,把tanα的值代入即可求出值;
解答: 解:由tanα=3,
sinα-cosα
3sinα+4cosα
=
tanα-1
3tanα+4
=
3-1
9+4
=
2
13
点评:本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={x|-2<x<4},B={y|y=|x+1|,x∈A},则A∩B=(  )
A、∅
B、{x|1<x<4}
C、{x|-2<x<5}
D、{x|0≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1,P在BD1上,过P作垂直于BD1的平面α,记这样得到的截面多边形(含三角形)周长为y,为什么当α在平面AB1C,面A1DC1之间运动时,y不变?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2
-arctanx(x∈R)的反函数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在半径为5的圆中,圆心角为周长的
2
3
的角所对圆弧的长是(  )
A、
3
B、
20π
3
C、
10π
3
D、
50π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)2 x2-2x>(
1
2
2-x
(2)(
1
π
2x+3≤π x2-7x+3

查看答案和解析>>

科目:高中数学 来源: 题型:

在约束条件
x≤1
x-y+m2≥0
x+y-1≥0
下,若目标函数z=-2x+y的最大值不超过4,则实数m的取值范围(  )
A、(-
3
3
B、[0,
3
]
C、[-
3
,0]
D、[-
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

二面角α-l-β的大小为45°,线段AB?α,B∈l,AB与l所成角为45°,则AB与β所成角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=
2

BD⊥CD,将其沿对角线BD折成四面体A-BCD,使平面ABD⊥平面BCD,则下列说法中不正确的是(  )
A、平面ACD⊥平面ABD
B、AB⊥CD
C、平面ABC⊥平面ACD
D、AD⊥平面ABC

查看答案和解析>>

同步练习册答案