精英家教网 > 高中数学 > 题目详情
圆M与圆x2+y2=25内切,且经过点A(3,2),则圆心M在(  )
A.一个椭圆上B.双曲线的一支上
C.一条抛物上D.一个圆上
圆x2+y2=25的圆心O(0,0),半径为:5.
设圆M的半径为r,∵圆M与圆x2+y2=25内切,且经过点A(3,2),
∴|MO|=5-r,并且|MA|=r,
∴|MO|+|MA|=5,又|OA|=
32+22
=
13
<5

M满足椭圆的定义,∴M在椭圆上.
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知圆柱的底面半径为,与圆柱底面成角的平面截这个圆柱得到一个椭圆,则这个椭圆的离心率为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知均在椭圆上,直线分别过椭圆的左右焦点,当时,有.
(I)求椭圆的方程;
(II)设P是椭圆上的任一点,为圆的任一条直径,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知椭圆的左、右准线分别为,且分别交轴于两点,从上一点发出一条光线经过椭圆的左焦点轴反射后与交于点,若,且,则椭圆的离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一动圆P与两圆O1x2+y2=1O2x2+y2-8x+7=0均内切,那么动圆P圆心的轨迹是(  )
A.椭圆B.抛物线
C.双曲线D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知B、C是两个定点,|BC|=6,且△ABC的周长等于16,则顶点A的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

【文科】已知F1(0,-3)、F2(0,3),动点P满足|PF1|+|PF2|=a+
9
a
(a>0),则点P的轨迹为(  )
A.椭圆B.线段C.椭圆或线段D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
经过点(0,1),离心率e=
3
2

(l)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于A,B两点,点A关于x轴的对称点为A′(A′与B不重合),则直线A′B与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程
x2
25-k
+
y2
k-9
=1表示椭圆,则k的取值范围是(  )
A.(9,17)B.(9,25)C.(9,17)∪(17,25)D.(-∞,9)∪(25,+∞)

查看答案和解析>>

同步练习册答案