分析 (1)对函数f(x)进行求导,令导数大于等于0在x>0上恒成立即可.(2)将a的值代入整理成方程的形式,然后转化为函数考虑其图象与x轴的交点的问题.
解答 解:(1)f′(x)=-$\frac{{ax}^{2}+2x-1}{x}$,(x>0)
依题意f'(x)≥0 在x>0时恒成立,即ax2+2x-1≤0在x>0恒成立.
则a≤$\frac{1-2x}{{x}^{2}}$在x>0恒成立,
即a≤[($\frac{1}{x}$-1)2-1]min x>0
当x=1时,($\frac{1}{x}$-1)2-1取最小值-1,
∴a的取值范围是(-∞,-1];
(2)a=-$\frac{1}{2}$,f(x)=-$\frac{1}{2}$x+b,∴$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b=0,
设g(x)=$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b,则g′(x)=$\frac{(x-2)(x-1)}{2x}$,
列表:
| x | (0,1) | 1 | (1,2) | 2 | (2,e] |
| g′(x) | + | 0 | - | 0 | + |
| g(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
点评 本题主要考查函数单调性与其导函数正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ③ | C. | ①② | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1} | B. | {-1,0,1} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α | B. | $\frac{π}{2}-α$ | C. | $\frac{π}{2}+α$ | D. | $α-\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com