精英家教网 > 高中数学 > 题目详情

已知向量,且
(1)求
(2)若-的最小值是,求的值。.

(1);(2)

解析试题分析:(1)由向量数量积, 向量的模长公式以及两角和的余弦、二倍角的余弦公式即可求解;
(2)以向量为载体考察三角函数知识以及二次函数在闭区间上的最值问题,体现分类讨论思想
试题解析:(1).        1分
.
,所以.         3分
(2).   4分
,所以.
①当时,当且仅当时,取最小值-1,这与题设矛盾.
②当时,当且仅当时,取最小值.由.
③当时,当且仅当时,取最小值.由,故舍去..
综上得:.                10分
考点:向量数量积,向量的模长公式以及两角和的余弦、二倍角的余弦公式,二次函数在闭区间上的最值问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知α,β∈(0,π),且tanα=2,cosβ=-
(1)求cos2α的值;
(2)求2α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为第三象限角,.
(1)化简
(2)设,求函数的最小值,并求取最小值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的值,
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期是
(1)求的单调递增区间;
(2)求在[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角A,B,C所对的边分别为a,b,c,且.
(1)求A;
(2)设的面积,求+的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的最小正周期和最小值;并写出该函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)在△ABC中,若A为锐角,且=1,BC=2,B=,求AC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知α、β∈(0,π),且tan(α-β)=,tanβ=-,求2α-β的值.

查看答案和解析>>

同步练习册答案