·ÖÎö £¨I£©ÉèF£¨-c£¬0£©£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽºÍÀëÐÄÂʹ«Ê½£¬½áºÏÍÖÔ²µÄ»ù±¾Á¿µÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÓÉÍÖÔ²·½³Ì¿ÉµÃ½¹µãF×ø±ê£¬ÌÖÂÛÖ±Ïßl1µÄбÂÊΪ0£¬Ö±Ïßl2µÄбÂʲ»´æÔÚ£¬ÇóµÃAB£¬CDµÄ³¤£¬¿ÉµÃÃæ»ý£»ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+$\frac{2\sqrt{2}}{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍ½¹°ë¾¶¹«Ê½£¬¿ÉµÃÏÒ³¤AB£¬½«k»»Îª-$\frac{1}{k}$£¬¿ÉµÃCDµÄ³¤£¬ÓÉËıßÐεÄÃæ»ý¹«Ê½S=$\frac{1}{2}$|AB|•|CD|£¬»¯¼òÕûÀí£¬¿ÉµÃkµÄʽ×Ó£¬ÔËÓû»Ôª·¨ºÍ»ù±¾²»µÈʽ£¬¼´¿ÉµÃµ½SµÄ·¶Î§£¬½ø¶øµÃµ½Ãæ»ýµÄ×îСֵ£®
½â´ð ½â£º£¨I£©ÉèF£¨-c£¬0£©£¬
ÓɵãFµ½Ö±Ïßax+by=0µÄ¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬¿ÉµÃ
$\frac{|-ac|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{2\sqrt{5}}{5}$£¬¢Ù
ÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬¼´ÓÐe=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$¢Ú
ÓÖa2-b2=c2£¬¢Û
ÓÉ¢Ù¢Ú¢Û½âµÃa=1£¬b=$\frac{1}{3}$£¬c=$\frac{2\sqrt{2}}{3}$£¬
ÔòÍÖÔ²·½³ÌΪx2+9y2=1£»
£¨¢ò£©ÓÉÍÖÔ²·½³Ì¿ÉµÃF£¨-$\frac{2\sqrt{2}}{3}$£¬0£©£¬
ÈôÖ±Ïßl1µÄбÂÊΪ0£¬Ö±Ïßl2µÄбÂʲ»´æÔÚ£¬
Ôò|AB|=2a=2£¬
ÓÉx=-c£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃy=¡À$\frac{{b}^{2}}{a}$=¡À$\frac{1}{9}$£¬¼´ÓÐ|CD|=$\frac{2}{9}$£¬
¿ÉµÃËıßÐÎACBDÃæ»ýΪ$\frac{1}{2}$¡Á2¡Á$\frac{2}{9}$=$\frac{2}{9}$£»
ÉèÖ±Ïßl1µÄбÂÊΪk£¬¿ÉµÃ·½³ÌΪy=k£¨x+$\frac{2\sqrt{2}}{3}$£©£¬
´úÈëÍÖÔ²·½³Ìx2+9y2=1£¬¿ÉµÃ£¨1+9k2£©x2+12$\sqrt{2}$k2x+8k2-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃx1+x2=-$\frac{12\sqrt{2}{k}^{2}}{1+9{k}^{2}}$£¬
ÓÉÍÖÔ²µÄ½¹°ë¾¶¹«Ê½¿ÉµÃ|AB|=£¨a+ex1£©+£¨a+ex2£©=2a+e£¨x1+x2£©
=2-$\frac{2\sqrt{2}}{3}$¡Á$\frac{12\sqrt{2}{k}^{2}}{1+9{k}^{2}}$=$\frac{2£¨1+{k}^{2}£©}{1+9{k}^{2}}$£¬
½«k»»Îª-$\frac{1}{k}$£¬¿ÉµÃ|CD|=$\frac{2£¨1+\frac{1}{{k}^{2}}£©}{1+\frac{9}{{k}^{2}}}$£¬
ÔòËıßÐÎACBDÃæ»ýΪS=$\frac{1}{2}$|AB|•|CD|=2•$\frac{2+{k}^{2}+\frac{1}{{k}^{2}}}{82+9£¨{k}^{2}+\frac{1}{{k}^{2}}£©}$£¬
Éèt=k2+$\frac{1}{{k}^{2}}$£¨t¡Ý2£©£¬ÔòS=2•$\frac{2+t}{82+9t}$=2•$\frac{1}{9+\frac{64}{2+t}}$£¬
ÓÉt¡Ý2¿ÉµÃ2+t¡Ý4£¬0£¼$\frac{64}{2+t}$¡Ü16£¬¼´ÓÐ
$\frac{1}{25}$¡Ü$\frac{1}{9+\frac{64}{2+t}}$£¼$\frac{1}{9}$£¬
Ôò$\frac{2}{25}$¡ÜS£¼$\frac{2}{9}$£®
×ÛÉϿɵã¬$\frac{2}{25}$¡ÜS¡Ü$\frac{2}{9}$£®
Ôòµ±Ö±Ïßl1µÄбÂÊΪ¡À1ʱ£¬ËıßÐÎACBDµÄÃæ»ýµÄ×îСֵΪ$\frac{2}{25}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬¿¼²éÖ±ÏߺÍÍÖÔ²ÏཻÏÒ³¤µÄÇ󷨣¬×¢ÒâÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍ½¹°ë¾¶¹«Ê½£¬¿¼²é»ù±¾²»µÈʽºÍ²»µÈʽµÄÐÔÖʵÄÔËÓ㬻¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 16+8¦Ð | B£® | 64+8¦Ð | C£® | 64+$\frac{8¦Ð}{3}$ | D£® | 16+$\frac{8¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-2£¬-1£© | B£® | £¨-1£¬+¡Þ£© | C£® | £¨-1£¬2£© | D£® | £¨-¡Þ£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÂúÒâ | ²»ÂúÒâ | ×Ü¼Æ | |
| ÄÐÐÔ/ÈË | 42 | 8 | 50 |
| Å®ÐÔ/ÈË | 28 | 22 | 50 |
| ×ܼÆ/ÈË | 70 | 30 | 100 |
| P£¨K2¡Ýk£© | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.843 | 6.635 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com