1£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¬µãFµ½Ö±Ïßax+by=0µÄ¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬ÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬¹ýµãFµÄÖ±Ïß11½»ÍÖÔ²EÓÚA£¬BÁ½µã£¬¹ýF×÷Ö±Ïßl2½»ÍÖÔ²EÓÚC¡¢DÁ½µã£¬ÇÒl1¡Íl2£®
£¨I£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÇóËıßÐÎACBDÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨I£©ÉèF£¨-c£¬0£©£¬ÔËÓõ㵽ֱÏߵľàÀ빫ʽºÍÀëÐÄÂʹ«Ê½£¬½áºÏÍÖÔ²µÄ»ù±¾Á¿µÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÓÉÍÖÔ²·½³Ì¿ÉµÃ½¹µãF×ø±ê£¬ÌÖÂÛÖ±Ïßl1µÄбÂÊΪ0£¬Ö±Ïßl2µÄбÂʲ»´æÔÚ£¬ÇóµÃAB£¬CDµÄ³¤£¬¿ÉµÃÃæ»ý£»ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+$\frac{2\sqrt{2}}{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍ½¹°ë¾¶¹«Ê½£¬¿ÉµÃÏÒ³¤AB£¬½«k»»Îª-$\frac{1}{k}$£¬¿ÉµÃCDµÄ³¤£¬ÓÉËıßÐεÄÃæ»ý¹«Ê½S=$\frac{1}{2}$|AB|•|CD|£¬»¯¼òÕûÀí£¬¿ÉµÃkµÄʽ×Ó£¬ÔËÓû»Ôª·¨ºÍ»ù±¾²»µÈʽ£¬¼´¿ÉµÃµ½SµÄ·¶Î§£¬½ø¶øµÃµ½Ãæ»ýµÄ×îСֵ£®

½â´ð ½â£º£¨I£©ÉèF£¨-c£¬0£©£¬
ÓɵãFµ½Ö±Ïßax+by=0µÄ¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬¿ÉµÃ
$\frac{|-ac|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{2\sqrt{5}}{5}$£¬¢Ù
ÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{2\sqrt{2}}{3}$£¬¼´ÓÐe=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$¢Ú
ÓÖa2-b2=c2£¬¢Û
ÓÉ¢Ù¢Ú¢Û½âµÃa=1£¬b=$\frac{1}{3}$£¬c=$\frac{2\sqrt{2}}{3}$£¬
ÔòÍÖÔ²·½³ÌΪx2+9y2=1£»
£¨¢ò£©ÓÉÍÖÔ²·½³Ì¿ÉµÃF£¨-$\frac{2\sqrt{2}}{3}$£¬0£©£¬
ÈôÖ±Ïßl1µÄбÂÊΪ0£¬Ö±Ïßl2µÄбÂʲ»´æÔÚ£¬
Ôò|AB|=2a=2£¬
ÓÉx=-c£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃy=¡À$\frac{{b}^{2}}{a}$=¡À$\frac{1}{9}$£¬¼´ÓÐ|CD|=$\frac{2}{9}$£¬
¿ÉµÃËıßÐÎACBDÃæ»ýΪ$\frac{1}{2}$¡Á2¡Á$\frac{2}{9}$=$\frac{2}{9}$£»
ÉèÖ±Ïßl1µÄбÂÊΪk£¬¿ÉµÃ·½³ÌΪy=k£¨x+$\frac{2\sqrt{2}}{3}$£©£¬
´úÈëÍÖÔ²·½³Ìx2+9y2=1£¬¿ÉµÃ£¨1+9k2£©x2+12$\sqrt{2}$k2x+8k2-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃx1+x2=-$\frac{12\sqrt{2}{k}^{2}}{1+9{k}^{2}}$£¬
ÓÉÍÖÔ²µÄ½¹°ë¾¶¹«Ê½¿ÉµÃ|AB|=£¨a+ex1£©+£¨a+ex2£©=2a+e£¨x1+x2£©
=2-$\frac{2\sqrt{2}}{3}$¡Á$\frac{12\sqrt{2}{k}^{2}}{1+9{k}^{2}}$=$\frac{2£¨1+{k}^{2}£©}{1+9{k}^{2}}$£¬
½«k»»Îª-$\frac{1}{k}$£¬¿ÉµÃ|CD|=$\frac{2£¨1+\frac{1}{{k}^{2}}£©}{1+\frac{9}{{k}^{2}}}$£¬
ÔòËıßÐÎACBDÃæ»ýΪS=$\frac{1}{2}$|AB|•|CD|=2•$\frac{2+{k}^{2}+\frac{1}{{k}^{2}}}{82+9£¨{k}^{2}+\frac{1}{{k}^{2}}£©}$£¬
Éèt=k2+$\frac{1}{{k}^{2}}$£¨t¡Ý2£©£¬ÔòS=2•$\frac{2+t}{82+9t}$=2•$\frac{1}{9+\frac{64}{2+t}}$£¬
ÓÉt¡Ý2¿ÉµÃ2+t¡Ý4£¬0£¼$\frac{64}{2+t}$¡Ü16£¬¼´ÓÐ
$\frac{1}{25}$¡Ü$\frac{1}{9+\frac{64}{2+t}}$£¼$\frac{1}{9}$£¬
Ôò$\frac{2}{25}$¡ÜS£¼$\frac{2}{9}$£®
×ÛÉϿɵã¬$\frac{2}{25}$¡ÜS¡Ü$\frac{2}{9}$£®
Ôòµ±Ö±Ïßl1µÄбÂÊΪ¡À1ʱ£¬ËıßÐÎACBDµÄÃæ»ýµÄ×îСֵΪ$\frac{2}{25}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬¿¼²éÖ±ÏߺÍÍÖÔ²ÏཻÏÒ³¤µÄÇ󷨣¬×¢ÒâÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍ½¹°ë¾¶¹«Ê½£¬¿¼²é»ù±¾²»µÈʽºÍ²»µÈʽµÄÐÔÖʵÄÔËÓ㬻¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ð¡Ã÷ÔÚ¡°Å·ÖÞÆßÈÕÓΡ±µÄÓÎÍæÖжÔijָÃû½¨ÖþÎïµÄ¾°¹Û¼ÇÒäÓÌУ¬ÏÖ»æÖƸý¨ÖþÎïµÄÈýÊÓͼÈçͼËùʾ£¬ÈôÍø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬ÔòСÃ÷»æÖƵĽ¨ÖþÎïµÄÌå»ýΪ£¨¡¡¡¡£©
A£®16+8¦ÐB£®64+8¦ÐC£®64+$\frac{8¦Ð}{3}$D£®16+$\frac{8¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýf£¨x£©=$\frac{1}{\sqrt{2-x}}$+lg£¨1+x£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨-2£¬-1£©B£®£¨-1£¬+¡Þ£©C£®£¨-1£¬2£©D£®£¨-¡Þ£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬Ö±ÏßAB¾­¹ýÔ²OÉϵĵãC£¬²¢ÇÒOA=OB£¬CA=CB£¬Ô²O½»Ö±ÏßOBÓÚµãE¡¢D£¬Á¬½ÓEC¡¢CD£®
£¨¢ñ£©ÇóÖ¤£ºÖ±ÏßABÊÇÔ²OµÄÇÐÏߣ»
£¨¢ò£©Èôtan¡ÏCED=$\frac{1}{3}$£¬Ô²OµÄ°ë¾¶Îª2£¬ÇóOAµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬½«¡÷ABCÑØ×ÅËüµÄÖÐλÏßDEÕÛµþºó£¬µãAÂäµ½µãA¡ä£¬Èô¡ÏC=120¡ã£¬¡ÏA=26¡ã£¬Ôò¡ÏA¡äDBµÄ¶ÈÊýÊÇ112¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³Êоö¶¨¾Í¡°½üÀ´½»Í¨ÕûÖÎÊÇ·ñÂúÒ⡱½øÐÐÎʾíµ÷²é£¬ÏÖÊÕ¼¯ÄÐÐÔ¡¢Å®ÐÔÊÐÃñͳ¼Æ±í¸÷50·Ý£¬Í³¼Æ½á¹ûÈçÏ£º
 ÂúÒâ ²»ÂúÒâ ×ܼÆ
ÄÐÐÔ/ÈË 42 8 50
 Å®ÐÔ/ÈË 28 22 50
 ×ܼÆ/ÈË 70 30100
£¨¢ñ£©ÄÜÓжà´ó°ÑÎÕÈÏΪ¡°ÊÐÃñ¶Ô½øÀ´½»Í¨ÕûÖÎÊÇ·ñÂúÒ⡱ÓëÐÔ±ðÓйأ¿
£¨¢ò£©ÒÑÖª²»ÂúÒâµÄ8ÃûÄÐÐÔ¾ÓÃñÖУ¬ÓÐ4ÃûÀÏÄêÈË¡¢3ÃûÖÐÄêÈË¡¢1ÃûÇàÄêÈË£¬ÏÖËæ»úµØ¶Ô8ÃûÄÐÐÔÊÐÃñÖð¸öÕ÷¼¯Òâ¼û£¬Ö±µ½ÓÐÀÏÄêÈ˱»Õ÷¼¯Òâ¼ûΪֹ£¬Çó±»Õ÷¼¯Òâ¼ûµÄÈËÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¸½£º
 P£¨K2¡Ýk£© 0.100 0.050 0.010 0.001
 k 2.706 3.843 6.63510.828
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ë«ÇúÏßmx2-3y2=3mµÄÀëÐÄÂÊeÊÇ·½³Ì2x2-5x+2=0µÄÒ»¸ö¸ù£¬Çó£º
£¨1£©´ËË«ÇúÏßµÄÐéÖáµÄ³¤£®
£¨2£©ÓëË«ÇúÏß¼°Ë«ÇúÏßµÄÁ½½¥½üÏß¶¼ÏàÇеÄÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬AD¡ÎBC£¬AB¡ÍAD£¬BC=$\frac{2\sqrt{3}}{3}$£¬AB=1£¬BD=PA=2£¬M ÎªPDµÄÖе㣮
£¨¢ñ£© ÇóÒìÃæÖ±ÏßBDÓëPCËù³É½ÇµÄÓàÏÒÖµ£»
£¨¢ò£©Çó¶þÃæ½ÇA-MC-DµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ö¤Ã÷£ºº¯Êýf£¨x£©=$\sqrt{2x+3}$ÔÚ£¨0£¬3£©ÉÏÊÇÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸