精英家教网 > 高中数学 > 题目详情
16.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB的度数是112°.

分析 根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.

解答 解:由轴对称的性质知∠A′DE=∠B=180°-120°-26°=34°,
∠BDE=180°-∠B=146°,
故∠A'DB=∠BDE-∠A'DE=146°-34°=112°.
故答案为:112°.

点评 本题考查了轴对称的性质及三角形中位线定理,根据题意得出各角之间的关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,长轴长为2$\sqrt{3}$,直线l:y=kx+m交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)若以AB为直径的圆恰过坐标原点O,证明:原点O到直线l的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),M是C上任意一点;以前述坐标系的原点O为极点、Ox为极轴建立极坐标系,点A的极坐标为(4$\sqrt{2}$,$\frac{π}{4}$).
(Ⅰ)求直线OA直角坐标方程;    
(Ⅱ)求|AM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,二面角D-EC-B等于90°.
(Ⅰ)证明:DE⊥平面SBC;
(Ⅱ)证明:SE=2EB;
(Ⅲ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知:点E、F分别是正方形ABCD的边AB、BC的中点,BD、DF分别交CE于点G、H,若正方形ABCD的面积是240,则四边形BFHG的面积等于(  )
A.26B.28C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,点F到直线ax+by=0的距离为$\frac{2\sqrt{5}}{5}$,椭圆E的离心率为$\frac{2\sqrt{2}}{3}$,过点F的直线11交椭圆E于A,B两点,过F作直线l2交椭圆E于C、D两点,且l1⊥l2
(I)求椭圆E的方程;
(Ⅱ)求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值记为an,其中a1=0,a2=1,则an=n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有40名高校应届毕业生参加某招工单位应聘,其中甲组20人学历为硕士研究生,乙组20人学历是本科,他们首先参加笔试,统计考试成绩得到的茎叶图如图(满分100分),如果成绩在86分以上(含86分)才可以进入面试阶段
(1)现从甲组中笔试成绩在90分及其以上的同学随机抽取2名,则至少有1名超过95分同学的概率;
(2)通过茎叶图填写如表的2×2列联表,并判断有多大把握认为笔试成绩与学历有关?.
本科生研究生合计
能参加面试
不能参加面试
合计
下面临界值表仅供参考
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246,6357.87910.828
参考公式:K2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲线C与直线l在该直角坐标系下的普通方程;
(2)动点A在曲线C上,动点B在直线l上,定点P(-1,1),求|PB|+|AB|的最小值.

查看答案和解析>>

同步练习册答案