1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\sqrt{2}cos¦È\\ y=\sqrt{2}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬MÊÇCÉÏÈÎÒâÒ»µã£»ÒÔǰÊö×ø±êϵµÄÔ­µãOΪ¼«µã¡¢OxΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£®
£¨¢ñ£©ÇóÖ±ÏßOAÖ±½Ç×ø±ê·½³Ì£»    
£¨¢ò£©Çó|AM|µÄ×îСֵ£®

·ÖÎö £¨¢ñ£©ÓɵãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬¿ÉÖªÖ±ÏßOA¾­¹ýÔ­µã£¬Çãб½ÇΪ$\frac{¦Ð}{4}$£¬¼´¿ÉµÃ³ö·½³Ì£®
£¨¢ò£©µãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬ÀûÓû¥»¯¹«Ê½»¯ÎªÖ±½Ç×ø±ê£¬ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\sqrt{2}cos¦È\\ y=\sqrt{2}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì¿ÉµÃÔ²ÐÄΪC£¬°ë¾¶r£®¿ÉµÃ|AM|min=|AC|-r£®

½â´ð ½â£º£¨¢ñ£©ÓɵãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬
¡à$\frac{y}{x}=tan\frac{¦Ð}{4}$£¬
¡àÖ±ÏßOAµÄ·½³ÌΪ£ºy=x£®
£¨¢ò£©µãAµÄ¼«×ø±êΪ£¨4$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬»¯ÎªÖ±½Ç×ø±êA£¨4£¬4£©£¬
ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+\sqrt{2}cos¦È\\ y=\sqrt{2}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£º£¨x-1£©2+y2=2£¬
¡àÔ²ÐÄΪC£¨1£¬0£©£¬°ë¾¶Îª$\sqrt{2}$£®
ÓÉÓÚµãAÔÚÔ²Í⣬ÇÒ|AC|=5£¬
¡à|AM|min=5-$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow a$=£¨$\sqrt{3}$cos¦Øx£¬-1£©£¬$\overrightarrow b$=£¨sin¦Øx£¬cos2¦Øx+$\frac{1}{2}$£©£¬£¨¦Ø£¾0£©£¬º¯Êýf£¨x£©=$\overrightarrow a$•$\overrightarrow b$µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨II£©Éè¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èôc=$\sqrt{3}$£¬f£¨C£©=0£¬¶øÇÒÂú×ãsinB=2sinA£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ$\frac{{S}_{6}}{{S}_{3}}$=28£¬a3=9£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ã$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{{b}_{n}£¨{n}^{2}+n£©}$£¬ÇóÊýÁÐ{an+bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬ÔÚ¡÷ABCÖУ¬CDÊÇ¡ÏACBµÄ½Çƽ·ÖÏߣ¬¡÷ADCµÄÍâ½ÓÔ²½»Ïß¶ÎBCÓÚµãE£¬BE=3AD£®
£¨1£©ÇóÖ¤£ºAB=3AC£» 
£¨2£©µ±AC=4£¬AD=3ʱ£¬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®P£¨3cos¦È£¬sin¦È£©ÊÇÈñ½Ç¦ÁÖÕ±ßÉÏÒ»µã£¬ÆäÖÐ0£¼¦È£¼$\frac{¦Ð}{2}$£®¼Çy=¦È-¦Á£¬Ôò yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{3}$D£®$\frac{¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýf£¨x£©=$\frac{1}{\sqrt{2-x}}$+lg£¨1+x£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨-2£¬-1£©B£®£¨-1£¬+¡Þ£©C£®£¨-1£¬2£©D£®£¨-¡Þ£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÏÖÓÐÈý¸öʵÊýµÄ¼¯ºÏ£¬¼È¿É±íʾΪ{a£¬$\frac{b}{a}$£¬1}£¬Ò²¿É±íʾΪ{a2£¬a+b£¬0}£¬Ôòa2016+b2016=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬½«¡÷ABCÑØ×ÅËüµÄÖÐλÏßDEÕÛµþºó£¬µãAÂäµ½µãA¡ä£¬Èô¡ÏC=120¡ã£¬¡ÏA=26¡ã£¬Ôò¡ÏA¡äDBµÄ¶ÈÊýÊÇ112¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®2+22+23¡­+25n-1+a±»31³ýËùµÃµÄÓàÊýΪ3£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸