精英家教网 > 高中数学 > 题目详情
若直线x+y+a=0与圆(x-a)2+y2=2相切,则a=(  )
A、1
B、-1
C、
2
D、1或-1
考点:圆的切线方程
专题:直线与圆
分析:解决直线与圆相切问题,常用圆的几何性质,即圆心到直线的距离等于半径,利用点到直线的距离公式列方程即可解得a值.
解答: 解:∵直线x+y+a=0与圆(x-a)2+y2=2相切,
∴圆心(a,0)到直线x+y+a=0的距离等于圆的半径
2

|2a|
2
=
2

∴a=1或-1.
故选D.
点评:本题考查直线与圆的位置关系,直线与圆相切的几何性质,圆的标准方程,点到直线的距离公式等知识的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为a,点O是△BCD的中心,点M是CD中点.
(1)求点A到面BCD的距离;
(2)求AB与面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln
1+x
1-x
+sinx,则关于a的不等式f(a-2)+f(a2-4)<0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log20.5,b=0.2-0.1,c=0.21.1,则a,b,c的大小关系是(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则此几何体的体积是(  )
A、
20
3
π
B、6π
C、
10
3
π
D、
16
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2sin2x-1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
12
π
6
]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的体积,(其中∠BAC=30°)

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1的参数方程为
x=cosθ
y=sinθ
(θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的
3
倍,得到曲线C2
(Ⅰ)求曲线C2的普通方程;
(Ⅱ)已知点B(1,1),曲线C2与x轴负半轴交于点A,P为曲线C2上任意一点,求|PA|2-|PB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

行列式
.
3
Acosx
A
2
-2Asinx0
11cosx
.
(A>0)按第一列展开得
3
M11-2M21+M31
,记函数f(x)=M11+M21,且f(x)的最大值是4.
(1)求A;
(2)将函数y=f(x)的图象向左平移
π
12
个单位,再将所得图象上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在(-
π
12
11π
12
)
上的值域.

查看答案和解析>>

同步练习册答案