精英家教网 > 高中数学 > 题目详情
行列式
.
3
Acosx
A
2
-2Asinx0
11cosx
.
(A>0)按第一列展开得
3
M11-2M21+M31
,记函数f(x)=M11+M21,且f(x)的最大值是4.
(1)求A;
(2)将函数y=f(x)的图象向左平移
π
12
个单位,再将所得图象上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在(-
π
12
11π
12
)
上的值域.
考点:三阶矩阵,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的求值
分析:(1)先根据行列式,求出函数f(x),再利用二倍角公式、辅助角公式化简,结合f(x)的最大值是4,即可求A;
(2)先确定函数g(x),再利用三角函数的性质可得结论.
解答: 解:(1)由题意,M11=
.
Asinx0
1cosx
.
=Asinxcosx
=
A
2
sin2x
M21=-
.
Acosx
A
2
1cosx
.
=-Acos2x+
A
2
=-
A
2
cos2x
…(2分)
f(x)=
A
2
sin2x-
A
2
cos2x=
2
A
2
sin(2x-
π
4
)
…(3分)
fmax=
2
A
2
=4
,∴A=4
2
…(1分)
(2)向左移
π
12
y=4sin(2x-
π
12
)
,…(2分)
横坐标变为原来2倍得g(x)=4sin(x-
π
12
)
…(1分)
x∈(-
π
12
11π
12
)
,∴x-
π
12
∈(-
π
6
6
)
…(1分)
g(x)=4sin(x-
π
12
)∈(-2,4]
…(3分)
点评:本题考查行列式,考查三角函数的化简,考查三角函数的性质,正确化简函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线x+y+a=0与圆(x-a)2+y2=2相切,则a=(  )
A、1
B、-1
C、
2
D、1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量Pmg/L与时间th间的关系为P=P0e-kt.如果在前5个小时消除了10%的污染物,则10小时后还剩
 
%的污染物.

查看答案和解析>>

科目:高中数学 来源: 题型:

小强和小华两位同学约定下午在武荣公园篮球场见面,约定谁先到后必须等10分钟,这时若另一人还没有来就可以离开.如果小强是1:40分到达的,假设小华在1点到3点内到达,且小华在1点到3点之间何时到达是等可能的,则他们会面的概率是(  )
A、
1
9
B、
1
6
C、
1
4
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边是a,b,c,且c=3,a=
5
,sinB=2sinA
(1)求b;
(2)求cos(2B+2C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx-4k+1与曲线y=-1+
1-x2
恰有一个公共点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息.现有一种储蓄按复利计算利息,本金为a元,每期利率为r,设本利和为y,存期为x,则y随着x变化的函数式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2(x-
π
6
)-sin2x,x∈[0,
π
2
].
(1)求f(
π
12
)的值; 
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=
[x]
x
-a(x>0)
有且仅有3个零点,则a的取值范围是(  )
A、(
1
2
2
3
]
B、[
1
2
2
3
]
C、(
3
4
4
5
]
D、[
3
4
4
5
]

查看答案和解析>>

同步练习册答案