精英家教网 > 高中数学 > 题目详情
9.某几何体的三视图如图所示,且该几何体的所有棱中,则该几何体的所有棱中,最长的棱为(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.$\sqrt{5}$D.4

分析 根据三视图判断几何体为四棱锥,再利用体积公式求高x即可.

解答 解:根据三视图判断几何体为四棱锥,其直观图如图:AB=AD=2,BC=1,AB⊥BC,AB⊥AD,AC=$\sqrt{5}$,
V=$\frac{1}{3}$×$\frac{1+2}{2}$×2×x=3⇒x=3.
PA=x=3,AC>AD=AB,∴PC最长,PC=$\sqrt{{3}^{2}+(\sqrt{5})^{2}}$=$\sqrt{14}$.
故选:A.

点评 本题考查由三视图求几何体的体积.几何体的点、线、面距离的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和Sn满足an+1=2Sn+6,且a1=6.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)设${b_n}=\frac{{2{a_n}}}{{({3^n}-1)({S_n}+2)}}$,证明:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2及椭圆的短轴端点为顶点的三角形是等边三角形,椭圆的右顶点到右焦点的距离为1
(Ⅰ)求椭圆E的方程:
(Ⅱ)如图,直线l与椭圆E有且只有一个公共点M,且交于y轴于点P,过点M作垂直于l的直线交y轴于点Q,求证:F1,Q,F2,M,P五点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在直角梯形PBCD中,DC∥PB,A为PB上一点,且ABCD为正方形,AC、BD相交于点E,沿AD将△PAD折起,使平面PAD⊥平面ABCD,连接PB、PC得四棱锥P-ABCD,如图2所示,F是PC的中点,G为AC上一动点.

(1)求证:BD⊥FG;
(2)若点G为线段EC中点,证明:FG∥平面PBD;
(3)若PA=AB=2,求三棱锥B-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{AC}=3\overrightarrow{AE}$,则$\overrightarrow{AD}•\overrightarrow{BE}$的值为(  )
A.$-\frac{4}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,某几何体的三视图均为边长为2的正方形,则该几何体的体积是$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的程序框图的输出结果是(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=x2-4x-2lnx+5的零点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案