精英家教网 > 高中数学 > 题目详情
9.若椭圆的两准线之间的距离不大于长轴长的3倍,则它的离心率e的范围是[$\frac{1}{3}$,1).

分析 假设假设焦点在x轴上,$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),由题意可知:2×$\frac{{a}^{2}}{c}$≤3×2a,由e=$\frac{c}{a}$≥$\frac{1}{3}$,由0<e<1,即可求得离心率e的范围.

解答 解:假设焦点在x轴上,设椭圆方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
由题意可知:两准线之间的距离d=2×$\frac{{a}^{2}}{c}$,长轴长2a,
∴2×$\frac{{a}^{2}}{c}$≤3×2a,整理得:a≤3c,即$\frac{c}{a}$≥$\frac{1}{3}$
由椭圆的离心率e=$\frac{c}{a}$≥$\frac{1}{3}$,
由0<e<1,
∴离心率e的范围[$\frac{1}{3}$,1),
同理焦点在y上成立,
故答案为:[$\frac{1}{3}$,1).

点评 本题考查椭圆的标准方程及简单性质,考查椭圆的第二定义,考查离心率的取值范围,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知△ABC中,b=10,A=75°,C=60°,则c=(  )
A.$5\sqrt{2}$B.$5\sqrt{6}$C.$5\sqrt{3}$D.$10\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x2-$\frac{2}{x}$的零点位于区间(  )
A.(1,$\frac{5}{4}$)B.($\frac{5}{4}$,$\frac{3}{2}$)C.($\frac{3}{2}$,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直三棱柱ABC-A1B1C1中,点M、N分别为线段A1B、AC1的中点.
(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-4x-4,
(1)若 x∈[0,5]时,求f(x)的值域;
(2)若x∈[t,t+1](t∈R),求函数f(x)的最小值g(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=|2x-1|+|x-a|,a∈R.
(Ⅰ)当a=3时,解不等式f(x)≤4;
(Ⅱ)若f(x)=|x-1+a|,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知U=R,A={x|x2-x-6≤0},B=$\{x|\frac{5-x}{x-1}≥0\}$,则CR(A∩B)=(  )
A.{x|x≤1或x>3}B.{x|x<-2或x>5}C.{x|x<1或x>3}D.{x|1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.底面边长为a的正四面体的体积为$\frac{\sqrt{2}}{12}$a3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|x2-x<0},B={x|log2x≤0},则A∪B=(  )
A.(0,1)B.(-∞,1]C.(0,1]D.[0,1)

查看答案和解析>>

同步练习册答案