| A. | 1 | B. | 2 | C. | 1或2 | D. | 1或4 |
分析 由已知得0<a≤1时,f(a3)=a4+a6=2;当a3>a>0时,f(a3)=$lo{g}_{\sqrt{a+2}}{a}^{3}$-1=2,由此能求出a的值.
解答 解:∵实数a>0,函数f(x)=$\left\{\begin{array}{l}{ax+{a}^{2},x≤a}\\{lo{g}_{\sqrt{a+2}}x-1,x>a}\end{array}\right.$,f(a3)=2,
∴0<a≤1时,f(a3)=a4+a2=2,解得a=1,
当a3>a>0时,f(a3)=$lo{g}_{\sqrt{a+2}}{a}^{3}$-1=2,
∴$lo{g}_{\sqrt{a+2}}a$=1,解得a=2或a=-1(舍).
综上,a=1或a=2.
故选:C.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (¬p)∧q | B. | (¬p)∧(¬q) | C. | p∨(¬q) | D. | p∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com