精英家教网 > 高中数学 > 题目详情
16.矩形ABCD中,$AB=\sqrt{3}$,BC=1,将△ABC与△ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为(  )
A.$[0,\frac{π}{6}]$B.$[0,\frac{π}{3}]$C.$[0,\frac{π}{2}]$D.$[0,\frac{2π}{3}]$

分析 求出两个特殊位置,直线AD与直线BC成的角,即可得出结论.

解答 解:由题意,初始状态,直线AD与直线BC成的角为0,
DB=$\sqrt{2}$时,AD⊥DB,AD⊥DC,
∴AD⊥平面DBC,AD⊥BC,
直线AD与直线BC成的角为$\frac{π}{2}$,
∴在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为[0,$\frac{π}{2}$].
故选:C.

点评 本题考查两直线所成的角的范围的求法,考查学生的计算求解能力、推理论证能力、空间思维能力,考查数形结合思想、分类讨论思想、转化化归思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图是一个几何体在网格纸上的三视图,若面积最小网格均是边长为1的小正方形,则该几何体的体积为(  )
A.6B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.
(1)求a的值;
(2)如函数g(x)=f(x)-|x+1|,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.请按要求完成下列两题.
(Ⅰ)求由直线$x=-\frac{π}{3}$,$x=\frac{π}{3}$,y=0与曲线y=cosx所围成的封闭图形的面积.
(Ⅱ)求由直线y=x-4,曲线$y=\sqrt{2x}$及x轴所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(1)求证:EG∥平面ADF;
(2)设H为线段AF上的点,且AH=$\frac{2}{3}$HF,求直线BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-2x,x≤0\\ \frac{{\sqrt{x}}}{e^x},x>0\end{array}\right.$,若关于x的方程f(x)-a+1=0恰有3个不同的实数根,则实数a的取值范围为(  )
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(1,\frac{1}{e}+1)$C.$(0,\frac{1}{2e}+1)$D.$(\frac{1}{e},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图频率分布直方图.观察图形的信息,回答下列问题:
(1)求出物理成绩低于50分的学生人数;
(2)估计这次考试的平均分m与中位数n的值;
(3)设计一程序框图,根据输入的60名学生物理成绩输出这次考试的及格率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面直角坐标系内,B、C两点是x轴上的两动点,且|BC|=$\sqrt{2}$,A点是直线y=$\sqrt{2}$上的动点,则|AB|:|AC|的最大值与最小值的和为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下函数中在区间(0,+∞)上单调递增的函数是(  )
A.y=|x|+1B.y=$\frac{1}{x}$C.y=-x2+1D.y=-x|x|

查看答案和解析>>

同步练习册答案