精英家教网 > 高中数学 > 题目详情
6.如图是一个几何体在网格纸上的三视图,若面积最小网格均是边长为1的小正方形,则该几何体的体积为(  )
A.6B.8C.12D.16

分析 由三视图知该几何体是底面为矩形的四棱锥;
根据图中数据求出它的体积.

解答 解:由三视图可知:该几何体是底面为矩形的四棱锥;
根据图中数据,计算它的体积为
V=$\frac{1}{3}$×2×6×3=12.
故选:C.

点评 本题考查了由三视图求几何体体积的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在建立两个变量y与x的回归模型中,分别选择了四个不同的模型,它们的相关指数如下,其中拟合效果最好的模型是(  )
A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80
C.模型3的相关指数R2为0.54D.模型4的相关指数R2为0.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为$\frac{1}{2}$,$\frac{1}{2}$,$\frac{2}{3}$,且每个电子元件能否正常工作相互独立.若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元.
(1)求集成电路E需要维修的概率;
(2)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用.求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-1,2),B(2,3),若直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是(  )
A.(-∞,-$\frac{1}{2}$]∪[2,+∞)B.[{-$\frac{1}{2}$,2}]C.[-2,$\frac{1}{2}$]D.(-∞,-2]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,a1=a,an+1=3an+8n+6,若{an)为递增数列,则实数a的取值范围为(-7,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的空间几何体ABCDEFG中,四边形ABCD是边长为2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1,AE=3
(Ⅰ)求证:平面CFG⊥平面ACE
(Ⅱ)求平面CEG与平面ABCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“m=1”是“直线x-y=0和直线x+my=0互相垂直”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;
(Ⅱ)设函数$F(x)=-x[g(x)+\frac{1}{2}x-2]$,若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;
(Ⅲ)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0).若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.矩形ABCD中,$AB=\sqrt{3}$,BC=1,将△ABC与△ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为(  )
A.$[0,\frac{π}{6}]$B.$[0,\frac{π}{3}]$C.$[0,\frac{π}{2}]$D.$[0,\frac{2π}{3}]$

查看答案和解析>>

同步练习册答案