精英家教网 > 高中数学 > 题目详情
16.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,AB=PA=aBC(a>0).
(1)当a=1时,求证:平面PBD⊥平面PAC;
(2)试问BC边上是否存在唯一的点Q,使得PQ⊥QD.若存在,求此时a的值及二面角A-PD-Q的余弦值;若不存在,请说明理由.

分析 (1)由线面垂直得AC⊥PD,由正方形性质得AC⊥BD,由此能证明平面PAC⊥平面PBD.
(2)由已知中PA⊥平面ABCD,四边形ABCD为矩形,我们易得PQ⊥QD?AQ⊥QD,由此我们易得以AD为半径的圆与BC应该有交点,即可得到满足条件的实数a的值范;取AD的中点M,过M作MN⊥PD,垂足为N,连接QM,QN,根据三垂线定理,我们易判断出∠QNM为二面角Q-PD-A的平面角,解三角形QMN,即可得到二面角Q-PD-A的余弦值大小.

解答 (1)证明:∵PD⊥底面ABCD,AC?底面ABCD,
∴AC⊥PD,
又∵底面ABCD为正方形,
∴AC⊥BD,而PD与BD交于点D,
∴AC⊥平面PBD,…(4分)
又AC?平面PAC,
∴平面PAC⊥平面PBD;
(2)解:∵PA⊥平面ABCD,
∴PA⊥QD,若PQ⊥QD成立,即AQ⊥QD成立,
∴点Q应为BC与以AD为直径的圆的公共点,
∴当a=$\frac{1}{2}$时,BC上有且仅有一点满足题意,此时Q点为BC的中点,
取AD的中点M,过M作MN⊥PD,垂足为N,连接QM,QN,
由于QN⊥平面PAD,
∴∠QNM为二面角Q-PD-A的平面角,
设AB=1,则MD=1,PD=$\sqrt{5}$,且△DNM∽△DAP,
∴MN=$\frac{1}{\sqrt{5}}$,
从而在直角△QNM中,QN=$\frac{\sqrt{6}}{\sqrt{5}}$,
∴cos∠QNM=$\frac{MN}{QN}$=$\frac{\sqrt{6}}{6}$.

点评 本题考查平面与平面垂直的证明,考查二面角大小的求法,(2)的关键是求出二面角Q-PD-A的平面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知C,D是圆A:(x+1)2+y2=1与圆B:x2+(y-2)2=4的公共点,则△BCD的面积为(  )
A.$\frac{4}{5}$B.$\frac{8}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{8\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.世界园艺博览会将在陕西西安浐灞生态区举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用.
假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ)用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一位模型赛车手遥控一辆赛车,沿直线向正东方向前行1m,逆时针方向旋转α°,继续沿直线向前行进1m,再逆时针旋转α°,按此方法继续操作下去.
(1)按1:100的比例作图说明当α=60°时,操作几次赛车的位移为零;
(2)按此操作使赛车能回到出发点,α应满足什么条件?请写出两个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过点P(-5,-4),且与两坐标轴在第三象限围成三角形面积为5的直线方程是8x+5y+20=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某同学做了一个如图所示的等腰直角三角形形状的数表,且把奇数和偶数分别依次排在了数表的奇数行和偶数行,若用a(i,j)表示第i行从左数第j个数,如a(4,3)=10,则a(21,6)=(  )
A.219B.211C.209D.213

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(Ⅰ)求a的值;
(Ⅱ)已知结论:若函数f(x)=x-ln(x+a)在区间(m,n)内导数都存在,且m>-a,则存在x0∈(m,n),使得$f'({x_0})=\frac{f(n)-f(m)}{n-m}$.试用这个结论证明:若-a<x1<x2,设函数$g(x)=\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}(x-{x_1})+f({x_1})$,则对任意x∈(x1,x2),都有f(x)<g(x);
(Ⅲ)若et+n≥1+n对任意的正整数n都成立(其中e为自然对数的底),求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{3+x+{x}^{2}}{1+x}$(x>0)的最小值是2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a=(cosθ,sinθ)$,向量$\overrightarrow b=(\sqrt{3},-1)$,则|2$\overrightarrow a-\overrightarrow b|$的最大值,最小值分别是(  )
A.4,0B.$4\sqrt{2}$,4C.$4\sqrt{2}$,0D.16,0

查看答案和解析>>

同步练习册答案