精英家教网 > 高中数学 > 题目详情
圆锥的侧面面积是底面面积的2倍,则圆锥的母线与底面所成的角为(  )
A、
π
3
B、
π
4
C、
π
6
D、
π
12
考点:旋转体(圆柱、圆锥、圆台)
专题:计算题
分析:由圆锥的侧面积是其底面积的2倍,我们易求出圆锥的母线与底面半径之间的关系,解由圆锥高、底面半径、圆锥母线构成的直角三角形,即可求出圆锥的母线与底面所成的角.
解答: 解:设圆锥的底面半径为R,母线长为l,则:
其底面积:S底面积=πR2
其侧面积:S侧面积=
1
2
•2πR•l=πRl
∵圆锥的侧面积是其底面积的2倍,
∴πRl=2πR2,即l=2R,
故该圆锥的母线与底面所成的角θ满足:cosθ=
R
l
=
1
2

∴θ=
π
3

故选A.
点评:本题考查的知识点是旋转体的性质,根据圆锥的侧面积是其底面积的2倍,求出圆锥的母线与底面半径之间的关系是解答本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总有f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
已知函数g(x)=x2与h(x)=a•2x-1是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数a的值;
(3)在(2)的条件下,若方程g(2x-1)+h(x)=m有解,求实m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,则实数a的取值组成的集合是 (  )
A、{
1
2
,-
1
3
}
B、{-
1
2
1
3
}
C、{-
1
2
,0,
1
3
}
D、{-
1
3
,0,
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

两人轮流掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则,由另一个人投掷,则先投掷人获胜的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A:x2+y2+2x+2y-2=0,圆B:x2+y2-2ax-2by+a2-1=0,如果圆B始终平分圆A的周长
(I)求动圆B的圆心的轨迹方程;
(II)当圆B的半径最小时,求圆B的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

π
4
<x<
π
2
时,函数f(x)=
sin2x
2cosx(sinx-cosx)
的最小值是(  )
A、2
B、1
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件
|MP|
|MA|
=
|NQ|
|NA|
=1
,则|AM|+|AN|的值为(  )
A、22B、20C、18D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

某袋中有红球2个、黑球3个、白球5个,它们大小相同、标号不同,从中取出4个.取出的球中,同色的2个作为一组.红色的一组得5分、黑色的一组得3分、白色的一组得1分,得分总数用x表示,求:
(1)x取得最大值的概率;
(2)x取得最小值时,取出三种不同颜色球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
x→1
x+a
3x
-1
=b,则a+b
=(  )
A、-2B、0C、2D、4

查看答案和解析>>

同步练习册答案