【题目】在数列
与
中,
,
,数列
的前
项和
满足
,
.
(1)求
,
,
,
的值,猜测
的通项公式,并证明之.
(2)求数列
与
的通项公式;
(3)设
,
.证明:
.
科目:高中数学 来源: 题型:
【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:
温差 | 8 | 10 | 11 | 12 | 13 |
发芽数 | 79 | 81 | 85 | 86 | 90 |
(1)请根据统计的最后三组数据,求出
关于
的线性回归方程
;
(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;
(3)若100颗小麦种子的发芽率为
颗,则记为
的发芽率,当发芽率为
时,平均每亩地的收益为
元,某农场有土地10万亩,小麦种植期间昼夜温差大约为
,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.
附:在线性回归方程
中,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 80 | 40 | 120 |
对商品不满意 | 70 | 10 | 80 |
合计 | 150 | 50 | 200 |
(1) 是否有
的把握认为商品好评与服务好评有关? 请说明理由;
(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设![]()
![]()
Ⅰ
为减少对周边区域的影响,试确定E,F的位置,使
与
的面积之和最小;
Ⅱ
为节省建设成本,求使
的值最小时AE和BF的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱
各条棱的长度均相等,
为
的中点,
分别是线段
和线段
的动点(含端点),且满足
,当
运动时,下列结论中不正确的是
![]()
A. 在
内总存在与平面
平行的线段
B. 平面
平面![]()
C. 三棱锥
的体积为定值
D.
可能为直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求
和
的直角坐标方程;
(Ⅱ)若曲线
截直线
所得线段的中点坐标为
,求
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:
![]()
并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:
![]()
(1)根据图中的数据,试估计该款电视机的平均使用时间;
(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;
(3)若按照电视机的使用时间进行分层抽样,从使用时间在[0,4)和[4,20]的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在[4,20]内的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com