如图,四边形是的内接四边形,的延长线与的延长线交于点,且.
(I)证明:;
(II)设不是的直径,的中点为,且,证明:为等边三角形.
(1)详见解析;(2)详见解析
解析试题分析:(1)根据题意可知A,B,C,D四点共圆,利用对角互补的四边形有外接圆这个结论可得:,由已知得,故;(2)不妨设出BC的中点为N,连结MN,则由,由等腰三角形三线合一可得:,故O在直线MN上,又AD不是圆O的直径,M为AD的中点,故,即,所以,故,又,故,由(1)知,,所以为等边三角形.
试题解析:(1)由题设知A,B,C,D四点共圆,所以,
由已知得,故.
(2)设BC的中点为N,连结MN,则由知,
故O在直线MN上.
又AD不是圆O的直径,M为AD的中点,故,
即.
所以,故,
又,故.
由(1)知,,所以为等边三角形.
考点:1.圆的几何性质;2.等腰三角形的性质
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点C、F,连接CF并延长交AB于点E.
(Ⅰ)求证:E是AB的中点。
(Ⅱ)求线段BF的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.
(1)求证:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH∶HC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com