精英家教网 > 高中数学 > 题目详情
(本题满分14分)
已知函数的图象关于原点对称,且.
(1)求函数的解析式;
(2)若在[-1,1]上是增函数,求实数的取值范围
(1)(2)

试题分析:解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则
 
∵点在函数的图象上
 
(Ⅱ)


ⅰ)
ⅱ)

点评:解决的关键是利用函数的图像的对称性来求解解析式,实际上就是点的坐标的求解,同时能结合解析式来分析单调性,属于基础题。对称性是高考中的一个热点。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数的定义域为,对于任意的,都有,且当时,.
(1)求证:为奇函数;   (2)求证:上的减函数;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则=
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,令,,,
        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=,数列满足。(12分)
(1)求数列的通项公式;
(2)令-+-+…+-
(3)令=+++┅,若<对一切都成立,求最小的正整数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等式,定义映射,则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某公园计划建造一个室内面积为800m2的矩形花卉温室.在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道。沿前侧内墙保留3m宽的空地,中间矩形内种植花卉.当矩形温室的边长各为多少时,花卉的种植面积最大?最大种植面积是多少?

查看答案和解析>>

同步练习册答案