精英家教网 > 高中数学 > 题目详情
已知等式,定义映射,则(    )
A.B.
C.D.
C

试题分析:
本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.解:比较等式两边x3的系数,得4=4+b1,则b1=0,故排除A,D;再比较等式两边的常数项,有1=1+b1+b2+b3+b4,∴b1+b2+b3+b4=0.故排除B故应选C
点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则=_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数的图象关于原点对称,且.
(1)求函数的解析式;
(2)若在[-1,1]上是增函数,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

判断下列各组中的两个函数是同一函数的为(   )
(1)
(2)
(3)
(4)
(5)
A.(1),(2)B.(2),(3)C.(4)D.(3),(5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
若函数的定义域为,其中a、b为任
意正实数,且a<b。
(1)当A=时,研究的单调性(不必证明);
(2)写出的单调区间(不必证明),并求函数的最小值、最大值;
(3)若其中k是正整数,对一切正整数k不等式都有解,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,其中
(1)若函数是偶函数,求函数在区间上的最小值;
(2)用函数的单调性的定义证明:当时,在区间上为减函数;
(3)当,函数的图象恒在函数图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足下述条件:对任意实数,当时,总有,则实数的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数由下表定义:

1
2
3
4
5

4
1
3
5
2
,则             

查看答案和解析>>

同步练习册答案