精英家教网 > 高中数学 > 题目详情
11.当进货单价为40元的商品按50元一个售出时,能卖出500个,设该商品每个涨价1元,其销售量将减少10个,问如何确定每个商品的售价x元能够使得利润y元最大,并求利润的最大值.

分析 由售价,可得该商品每个涨价x-50元,其销售量将减少10(x-50)个.即有利润y=(10+x-50)(500-10(x-50)),运用配方,即可得到最大值及x的值.

解答 解:由售价为x元,可得该商品每个涨价x-50元,
其销售量将减少10(x-50)个.
即有利润y=(10+x-50)(500-10(x-50))
=10(x-40)(100-x)
=10(-x2+140x-4000)
=10(-(x-70)2+900),
当x=70时,y取得最大值,且为9000元.
故每个商品的售价为70元能够使得利润y元最大,
利润的最大值为9000元.

点评 本题考查二次函数的最值问题,列出函数的解析式,运用配方,是解决二次函数的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若x∈R,则下列不等式恒成立的是(  )
A.lg(x2+1)≥lg2xB.2x≤$\frac{{{{(x+1)}^2}}}{2}$C.$\frac{1}{{{x^2}+1}}$<1D.x2+1>2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求(1+2x+x210(1-x)5展开式中各项系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若acosB=bcosA,则△ABC是(  )
A.直角三角形B.等腰三角形
C.等边三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,菱形ABCD中,AB=1,∠ABC=$\frac{2}{3}$π,E为线段AD的动点,设∠ECD=α.
(1)若EA=ED,求sinα;
(2)分别过D、B作EC的垂线,垂足分别为M、N,求2DM+BN的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=xex+cosx,则其导数y′=ex+xex-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a、b、c分别表示△ABC的三个内角A,B,C所对边的边长,A=120°,c>b,a=$\sqrt{21}$,S△ABC=$\sqrt{3}$,在AB边上一点M使BM=MC,求cos∠ACM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知A(-2,0)、B(2,0),点C在x轴的上方,且∠ACB=45°,若在给定的直线y=x-3上任取一点P,从点P向圆M引两条切线,切点分别为E、F.
(1)求△ABC外接圆M的方程;
(2)以PM为直径的圆是否过除M外的定点,若过,求出定点坐标;若不过,请说明理由;
(3)直线EF是否过定点,若过,求出定点坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.要得到函数$y=3sin(2x+\frac{π}{4})$的图象,只需将函数y=3sin2x的图象向左平移$\frac{π}{8}$个单位得到.

查看答案和解析>>

同步练习册答案