分析 设Sn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,利用错位相减法能证明$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$<2(n∈N*).
解答 证明:设Sn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,①
则$\frac{1}{2}{S}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}$,②
①-②,得:$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$
=1-$\frac{1}{{2}^{n}}-\frac{n}{{2}^{n+1}}$,
∴Sn=2-$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$<2.
∴$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$<2(n∈N*).
点评 本题考查数列的前n项和小于2的证明,是中档题,解题时要认真审题,注意错位相减法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{3}$ | B. | $2+\sqrt{3}$ | C. | $12+6\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {0,1,2,3} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{1}{3}$ | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com