精英家教网 > 高中数学 > 题目详情
3.已知等差数列{an},a11=103,a29=-53,求S39和a20

分析 根据等差数列的性质可得2a20=a11+a29,再根据前n项和公式计算即可.

解答 解:∵a11=103,a29=-53,
∴2a20=a11+a29=50,
∴a20=25,
∴S39=$\frac{39({a}_{1}+{a}_{39})}{2}$=39a20=39×25=1005

点评 本题考查等差数列的性质和前n项和公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是等比数列,Sn为数列{an}的前n项和,且a3=3,S3=9
(1)求数列{an}的通项公式.
(2)设bn=log2$\frac{3}{{a}_{2n+3}}$,且{bn}为递增数列.若cn=$\frac{8}{{b}_{n}{b}_{n+1}}$,求证:c1+c2+…+cn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$,$\overrightarrow{b}$不平行,向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$平行,则实数λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中:
①若a∈R,则(a+1)i是纯虚数;
②若a,b∈R且a>b,则a+i3>b+i2
③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;
④两个虚数不能比较大小.
其中,正确命题的序号是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l过点$P(1,\sqrt{3})$和M(2,0),直线l与曲线C:y2=4x交于A,B两点.
(1)写出直线l的参数方程;
(2)求$\frac{1}{{|{MA}|}}+\frac{1}{{|{MB}|}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两个焦点,P为椭圆上一点,如果△PF1F2的面积为3,tan∠PF1F2=$\frac{1}{3},tan∠P{F_2}{F_1}$=-3,则a=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.侧面都是直角三角形的正三棱锥,底面边长为2,则此棱锥的全面积是(  )
A.$3+\sqrt{3}$B.$6+2\sqrt{3}$C.$6+\sqrt{3}$D.$3+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a2009+a2010+a2011等于(  )
A.2 011B.1 006C.1 005D.1 003

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.放烟花是逢年过节一种传统庆祝节日的方式.已知一种烟花模型的三视图如图中的粗实线所示,网格纸上小正方形的边长为1,则该烟花模型的表面积为(
A.$(18+\sqrt{3})π$B.$(21+\sqrt{3})π$C.$(18+\sqrt{5})π$D.$(21+\sqrt{5})π$

查看答案和解析>>

同步练习册答案