精英家教网 > 高中数学 > 题目详情
13.放烟花是逢年过节一种传统庆祝节日的方式.已知一种烟花模型的三视图如图中的粗实线所示,网格纸上小正方形的边长为1,则该烟花模型的表面积为(
A.$(18+\sqrt{3})π$B.$(21+\sqrt{3})π$C.$(18+\sqrt{5})π$D.$(21+\sqrt{5})π$

分析 利用三视图判断几何体的形状,利用三视图的数据求解几何体的表面积即可.

解答 解:由三视图可知几何体是半径为2,高为3的圆柱,与半径为1,高为1的圆柱,以及底面半径为1,高为2的圆锥,组成的几何体.几何体的表面积为:2×4π-π+3×4π+2π×1+$\frac{1}{2}×2π×\sqrt{5}$=(21+$\sqrt{5}$)π.
故选:D.

点评 本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an},a11=103,a29=-53,求S39和a20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax3+bx2+c,其导函数f'(x)的图象如图,则函数f(x)的极小值为(  )
A.cB.a+b+cC.8a+4b+cD.3a+2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在二项式(x2+$\frac{1}{x}}$)5的展开式中,含x项的系数是a,则${∫}_{1}^{a}$x-1dx=ln10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}$)-|${\frac{x}{e}}$|,则使得f(x+1)<f(2x-1)成立x的范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=log${\;}_{\frac{1}{2}}$(ax2-2x+4)(a∈R),若f(x)的值域为(-∞,1],则a的值为$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当正数a,b,满足$\frac{4}{a+5b}+\frac{1}{3a+2b}=6$时,则4a+7b的最小值$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)与向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共线,其中A是△ABC的内角.
(1)求角A的大小.
(2)若BC=4,求△ABC的面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)的焦点为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且其准线被该双曲线截得的弦长是$\frac{2}{3}$b,则该双曲线的离心率为(  )
A.$\frac{13}{9}$B.$\frac{10}{9}$C.$\frac{\sqrt{13}}{3}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

同步练习册答案