【题目】已知函数f(x)=xex
(1)求函数f(x)的极值.
(2)若f(x)﹣lnx﹣mx≥1恒成立,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
投保类型 | 浮动因素 | 浮动比率 |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 20 | 10 | 10 | 20 | 15 | 5 |
以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)某家庭有一辆该品牌车且车龄刚满三年,记为该车在第四年续保时的费用,求的分布列;
(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有2辆事故车的概率;
②假设购进一辆事故车亏损4000元,一辆非事故盈利8000元,若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求其获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)指出函数的基本性质:定义域,奇偶性,单调性,值域(结论不需证明),并作出函数的图象;
(2)若关于的不等式恒成立,求实数的取值范围;
(3)若关于的方程恰有个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①回归直线过样本点中心(,)
②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变
③将一组数据中的每个数据都加上或减去同一个常数后,方差不变
④在回归方程=4x+4中,变量x每增加一个单位时,y平均增加4个单位
其中错误命题的序号是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,动点P,Q从点出发在单位圆上运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,则P,Q两点在第2019次相遇时,点P的坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取株作为样本进行研究。株高在及以下为不良,株高在到之间为正常,株高在及以上为优等。下面是这个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁。请根据可见部分,解答下面的问题:
(1)求的值并在答题卡的附图中补全频率分布直方图;
(2)通过频率分布直方图估计这株株高的中位数(结果保留整数);
(3)从育种基地内这种品种的种株中随机抽取2株,记表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量的分布列(用最简分数表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的是一质点做简谐运动的图象,则下列结论正确的是( )
A.该质点的运动周期为0.7s
B.该质点的振幅为5
C.该质点在0.1s和0.5s时运动速度为零
D.该质点的运动周期为0.8s
E.该质点在0.3s和0.7s时运动速度为零
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列命题的真假.
(1)若直线上有无数个点不在平面内,则;
(2)若直线与平面平行,则与平面内的任意一条直线都平行;
(3)若直线与平面平行,则与平面内的任意一条直线都没有公共点;
(4)如果两条平行直线中的一条与一个平面平行,则另一条直线也与这个平面平行.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com