精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=xex

1)求函数fx)的极值.

2)若fx)﹣lnxmx1恒成立,求实数m的取值范围.

【答案】(1)极小值.无极大值;(2)

【解析】

1)利用导数可得函数上单调递减,在上单调递增,即可得到函数的极值;

2)由题意得恒成立,即恒成立,设,求得函数的导数,得到函数有唯一零点,进而得到函数最小值,得到的取值范围.

(1)由题意,函数的定义域为,则

因为,

所以,函数上单调递减,在上单调递增;

函数处取得极小值.无极大值

(2)由题意知恒成立

)恒成立

=,则

,易知单调递增,

=<0, >0,所以有唯一零点

=0,且单调递减;

单调递增,

所以=

=0=,即

,由(1)的单调性知,

所以==1

即实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

投保类型

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通7座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车在下一年续保时的情况,统计得到了下面的表格:

类型

数量

20

10

10

20

15

5

以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)某家庭有一辆该品牌车且车龄刚满三年,记为该车在第四年续保时的费用,求的分布列;

(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.

若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有2辆事故车的概率;

②假设购进一辆事故车亏损4000元,一辆非事故盈利8000元,若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求其获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)指出函数的基本性质:定义域,奇偶性,单调性,值域(结论不需证明),并作出函数的图象;

2)若关于的不等式恒成立,求实数的取值范围;

3)若关于的方程恰有个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

(1)若关于的方程的两个实数根为,求证:

(2)当时,证明函数在函数的最小零点处取得极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①回归直线过样本点中心(

②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变

③将一组数据中的每个数据都加上或减去同一个常数后,方差不变

④在回归方程4x+4中,变量x每增加一个单位时,y平均增加4个单位

其中错误命题的序号是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,动点PQ从点出发在单位圆上运动,点P按逆时针方向每秒钟转弧度,点Q按顺时针方向每秒钟转弧度,则PQ两点在第2019次相遇时,点P的坐标为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取株作为样本进行研究。株高在及以下为不良,株高在之间为正常,株高在及以上为优等。下面是这个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁。请根据可见部分,解答下面的问题:

1)求的值并在答题卡的附图中补全频率分布直方图;

2)通过频率分布直方图估计这株株高的中位数(结果保留整数);

3)从育种基地内这种品种的种株中随机抽取2株,记表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量的分布列(用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是一质点做简谐运动的图象,则下列结论正确的是(

A.该质点的运动周期为0.7s

B.该质点的振幅为5

C.该质点在0.1s0.5s时运动速度为零

D.该质点的运动周期为0.8s

E.该质点在0.3s0.7s时运动速度为零

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假.

1)若直线上有无数个点不在平面内,则

2)若直线与平面平行,则与平面内的任意一条直线都平行;

3)若直线与平面平行,则与平面内的任意一条直线都没有公共点;

4)如果两条平行直线中的一条与一个平面平行,则另一条直线也与这个平面平行.

查看答案和解析>>

同步练习册答案