精英家教网 > 高中数学 > 题目详情
8.已知8x=4,则x=$\frac{2}{3}$.

分析 根据指数方程进行求解即可.

解答 解:∵8x=4,
∴23x=22
即3x=2,解得x=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$

点评 本题主要考查指数幂的求解,化为同底的指数方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.定义在[-1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0.
(1)判定函数f(x)在[-1,1]的单调性并加以证明;
(2)若$\frac{1}{2}$f(x)≤m2+2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.平移坐标轴化简下列曲线方程,并指出新坐标原点在原坐标系中的坐标:
(1)x2+y2-4x+6y-3=0
(2)x2+y2-10x+16y+64=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知不等式(2+x)(3-x)≥0的解集为A,函数f(x)=$\sqrt{k{x}^{2}+4x+k+3}$(k<0)的定义域为B.
(1)求集合A;
(2)若集合B中仅有一个元素,试求实数k的值;
(3)若B⊆A,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a>0,b>0,且a≠1,b≠1,求证:algb=blga

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若点(1,1)在圆(x-a)2+(y+a)2=4的外部,那么a的取值范围是(  )
A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知过一点P(1,-1)作抛物线y=x2的两条切线,切点分别为A、B;过点P的直线l与抛物线y=x2和线段AB分别相交于两点C、D和点Q.
(Ⅰ)求直线AB的方程;
(Ⅱ)试问:线段PC、PQ、PD的长度的倒数是否构成等差数列?请加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{9}^{-x}+1,x≤0}\end{array}\right.$,则f(f(1))+f(log3$\frac{1}{2}$)的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若三角形周长为l,内切圆半径为r,则三角形的面积为s=$\frac{1}{2}$lr,根据类比思想,若四面体的表面积为S,内切球半径为R,则这个四面体的体积为V=$\frac{1}{3}$SR.

查看答案和解析>>

同步练习册答案