分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.
解答
解:由z=y-x得y=x+z
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=x+z由图象可知当直线y=x+z经过点B时,直线y=x+z的截距最小,此时z也最小,
由$\left\{\begin{array}{l}{x+2y-4=0}\\{2x-y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即B(4,0).
代入目标函数z=y-x,
得z=0-4=-4.
z=$\frac{x+2y+3}{x+1}$=1+2×$\frac{y+1}{x+1}$,
设k=$\frac{y+1}{x+1}$,则k的几何意义是区域内的点到D(-1,-1)的斜率,
由图象知AD的斜率最大,此时k=$\frac{2+1}{0+1}$=3,
即z=1+2×3=7.
z=$\frac{x+2y+3}{x+1}$的最大值是7,
故答案为:-4;7.
点评 本题主要考查线性规划的应用,利用直线平移以及转化为直线斜率,利用数形结合是解决线性规划问题中的基本方法.综合性较强.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0) | B. | [-2,0) | C. | ∅ | D. | (-2,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N=N | B. | M∩(∁UN)=∅ | C. | M∪N=U | D. | M⊆(∁UN) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{12}{13}$ | B. | -$\frac{5}{13}$ | C. | $±\frac{12}{13}$ | D. | ±$\frac{5}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com