精英家教网 > 高中数学 > 题目详情
2.若实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x-y-8≤0}\end{array}}$,则z=y-x最小值是-4.z=$\frac{x+2y+3}{x+1}$的最大值是7.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.

解答 解:由z=y-x得y=x+z
作出不等式组对应的平面区域如图(阴影部分ABC):
平移直线y=x+z由图象可知当直线y=x+z经过点B时,直线y=x+z的截距最小,此时z也最小,
由$\left\{\begin{array}{l}{x+2y-4=0}\\{2x-y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,即B(4,0).
代入目标函数z=y-x,
得z=0-4=-4.
z=$\frac{x+2y+3}{x+1}$=1+2×$\frac{y+1}{x+1}$,
设k=$\frac{y+1}{x+1}$,则k的几何意义是区域内的点到D(-1,-1)的斜率,
由图象知AD的斜率最大,此时k=$\frac{2+1}{0+1}$=3,
即z=1+2×3=7.
z=$\frac{x+2y+3}{x+1}$的最大值是7,
故答案为:-4;7.

点评 本题主要考查线性规划的应用,利用直线平移以及转化为直线斜率,利用数形结合是解决线性规划问题中的基本方法.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}中,公比q>1,a1+a7=27,a3•a5=72,则$\frac{{a}_{13}}{{a}_{5}}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正四棱锥P-ABCD中,AB=2,PA=$\sqrt{5}$.
(1)求侧面PAD与侧面PBC所成二面角的大小;
(2)在直线PA上是否存在点E,使CE⊥平面PAD.若存在,指出点E的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x<-2或x>1},B={x|x>2或x<0},则(∁RA)∩B=(  )
A.(-2,0)B.[-2,0)C.D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{log3(an-1)}(n∈N*)的前n项和为Sn,且a2=10,S7=28.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{{a_{n+1}}-{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x2<1},N={y|y=log2x,x>2},则下列结论正确的是(  )
A.M∩N=NB.M∩(∁UN)=∅C.M∪N=UD.M⊆(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=xlnx+mx,且曲线y=f(x)在点(1,f(1))处的切线斜率为1.
(1)求实数m的值;
(2)设g(x)=f(x)-$\frac{a}{2}$x2-x+a(a∈R)在其定义域内有两个不同的极值点x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图程序框图,则输出结果为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sinα=$\frac{5}{13}$,则cosα等于(  )
A.$\frac{12}{13}$B.-$\frac{5}{13}$C.$±\frac{12}{13}$D.±$\frac{5}{13}$

查看答案和解析>>

同步练习册答案