精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=4x3+2mx2+(m-$\frac{2}{3}$)x+n(m,n∈R)在R上有两个极值点,则m的取值范围为(  )
A.(-1,1)B.(1,2)C.(-∞,1)U(2,+∞)D.(-∞,1)U(1,+∞)

分析 求出函数的导数,问题转化为导函数f′(x)=0有2个不相等的实数根,根据二次函数的性质求出m的范围即可.

解答 解:f′(x)=12x2+4mx+m-$\frac{2}{3}$,
若f(x)在R上有两个极值点,
则f′(x)=0有2个不相等的实数根,
∴△=16m2-48(m-$\frac{2}{3}$)>0,
解得:m>2或m<1,
故选:C.

点评 本题考查了函数的极值问题,考查导数的应用以及二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知递增等差数列{an}满足a1•a4=7,a2+a3=8.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD,设梯形部件ABCD的面积为y平方米.
(I)设CD=2x(米),将y表示成x的函数关系式;
(II)求梯形部件ABCD面积y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=ax(a>0且a≠1)在[-2,1]上的最大值为4,最小值为b,且函数g(x)=(2-7b)x是减函数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x≥2}\\{{a}^{x}+\frac{1}{4},x<2}\end{array}\right.$,为R上的单调函数,则实数a的取值范围为(  )
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1)C.(1,2]D.[2.+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=5+lnx,g(x)=$\frac{kx}{x+1}$(k∈R).
( I)若函数f(x)在点(1,f(1))处的切线与函数y=g(x)的图象相切,求k的值;
( II)若k∈N*,且x∈(1,+∞)时,恒有f(x)>g(x),求k的最大值.
(参考数据:ln5≈1.61,ln6≈1.7918,ln($\sqrt{2}$+1)=0.8814)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z满足(1+2i3)z=1+2i(i为虚数单位),则z共轭复数$\overline{z}$等于$-\frac{3}{5}-\frac{4}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.数列{an}是正项等比数列,{bn}是等差数列,且a5=b4,则有(  )
A.a3+a7≥b2+b6B.a3+a7≤b2+b6
C.a3+a7≠b2+b6D.a3+a7与b2+b6 大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A.B,将直线AB向左平移p个单位得到直线l,N为l上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)在(1)的条件下,求$\overrightarrow{NA}$•$\overrightarrow{NB}$的最小值.

查看答案和解析>>

同步练习册答案