精英家教网 > 高中数学 > 题目详情
13.如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD,设梯形部件ABCD的面积为y平方米.
(I)设CD=2x(米),将y表示成x的函数关系式;
(II)求梯形部件ABCD面积y的最大值.

分析 如图所示,以直径AB所在的直线为x轴,线段AB中垂线为y轴,建立平面直角坐标系,过点C作CE⊥AB,
(I)由CD的长表示出OE的长,利用勾股定理表示出CE的长,利用梯形面积公式表示出y与x的函数关系式,并求出x的范围即可;
(II)把表示出y与x的关系式变形,令被开方数等于t,求出导函数t′,根据导函数的正负确定出函数的增减性,进而求出y的最大值即可.

解答 解:如图所示,以直径AB所在的直线为x轴,线段AB中垂线为y轴,建立平面直角坐标系,过点C作CE⊥AB,
(I)∵CD=2x,
∴OE=x(0<x<1),CE=$\sqrt{1-{x}^{2}}$,
∴y=$\frac{1}{2}$(|AB|+|CD|)•CE=$\frac{1}{2}$(2+2x)$\sqrt{1-{x}^{2}}$=(x+1)$\sqrt{1-{x}^{2}}$(0<x<1);

(II)y=$\sqrt{(x+1)^{2}(1-{x}^{2})}$=$\sqrt{-{x}^{4}-2{x}^{3}+2x+1}$,
令t=-x4-2x3+2x+1,
则t′=-4x3-6x2+2=-2(2x3+3x2-1)=-2(x+1)2(2x-1),
令t'=0,得到x=$\frac{1}{2}$或x=-1(舍),
∴当0<x<$\frac{1}{2}$时,t'>0,
∴函数在(0,$\frac{1}{2}$)上单调递增,
当$\frac{1}{2}$<x<1时,t'<0,
∴函数在($\frac{1}{2}$,1)上单调递减,
当x=$\frac{1}{2}$时,t有最大值$\frac{27}{16}$,ymax=$\frac{{3\sqrt{3}}}{4}$,
答:梯形部件y'=0面积的最大值为$\frac{{3\sqrt{3}}}{4}$平方米.

点评 此题考查了函数模型的选择与应用,熟练掌握导数在函数增减性中的应用是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex,g(x)=ax+b(a,b∈R).
(1)设h(x)=xg(x)+1.
①若a≠0,则a,b满足什么条件时,曲线y=f(x)与y=h(x)在x=0处总有相同的切线?
②当a=1时,求函数F(x)=$\frac{h(x)}{f(x)}$单调区间;
(2)若集合{x|f(x)<g(x)}为空集,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设直线l过点(-3,0),且与圆x2+y2=1相切,则l的斜率是(  )
A.±$\frac{1}{4}$B.±$\frac{{\sqrt{2}}}{4}$C.±$\frac{1}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ex+ax+b在点(0,f(0))处的切线方程为x+y+1=0.
(1)求a,b值,并求f(x)的单调区间;
(2)证明:当x≥0时,f(x)>x2-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若角α的终边过点P(-1,3),则sinα的值为(  )
A.$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.±$\frac{3\sqrt{10}}{10}$D.±$\frac{\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x),g(x)满足当x∈R时,f′(x)g(x)+f(x)′g(x)>0,若a>b,则有(  )
A.f(a)g(a)=f(b)g(b)B.f(a)g(a)>f(b)g(b)
C.f(a)g(a)<f(b)g(b)D.f(a)g(a)与f(b)g(b)大小关系不定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,则实数a的值为(  )
A.0或1或2B.1或2C.0D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=4x3+2mx2+(m-$\frac{2}{3}$)x+n(m,n∈R)在R上有两个极值点,则m的取值范围为(  )
A.(-1,1)B.(1,2)C.(-∞,1)U(2,+∞)D.(-∞,1)U(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=-x2-x+4 (x∈R)的递减区间是[$-\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案