精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ex,g(x)=ax+b(a,b∈R).
(1)设h(x)=xg(x)+1.
①若a≠0,则a,b满足什么条件时,曲线y=f(x)与y=h(x)在x=0处总有相同的切线?
②当a=1时,求函数F(x)=$\frac{h(x)}{f(x)}$单调区间;
(2)若集合{x|f(x)<g(x)}为空集,求ab的最大值.

分析 (1)①分别利用导数求出y=f(x)与y=h(x)在x=0的切线方程,根据两切线重合可求出a,b满足的条件;
②先求出函数F(x)的解析式,然后求出导函数F′(x),令F′(x)=0,讨论根的大小,从而求出函数的单调减区间;
(2)由集合{x|f(x)<g(x)}为空集,可知不等式f(x)≥g(x)对任意x∈R恒成立,即y=f(x)-g(x)≥0恒成立.

解答 解:(1)h(x)=ax2+bx+1
①∵f′(x)=ex,∴f′(0)=1,又f(0)=1,
∴y=f(x)在x=0处的切线方程为y=x+1…(2分)
又∵h′(x)=2ax+b,∴h′(0)=b,又h(0)=1,∴y=h(x)在x=0处的切线方程为y=bx+1,所以当a≠0,a∈R且b=1时,曲线y=f(x)与y=h(x)在x=0处总有相同的切线.…(4分)
(2)由a=1,$F(x)=\frac{{{x^2}+bx+1}}{e^x}$,∴$F′(x)=\frac{{-{x^2}+(2-b)x+b-1}}{e^x}$,
∴$F′(x)=\frac{{-{x^2}+(2-b)x+b-1}}{e^x}=-\frac{(x-1)(x-(1-b))}{e^x}$,…(6分)
由F′(x)=0,得x1=1,x2=1-b,∴当b>0时,函数y=F(x)的减区间为(-∞,1-b),(1,+∞);增区间为(1-b,1);
当b=0时,函数y=F(x)的减区间为(-∞,+∞);
当b<0时,函数y=F(x)的减区间为(-∞,1),(1-b,+∞),增区间为(1,1-b),…(9分)
(2)由集合{x|f(x)<g(x)}为空集,可知不等式f(x)≥g(x)对任意x∈R恒成立,即y=f(x)-g(x)≥0恒成立.…(10分)
当a≤0时,函数y=ex-ax-b在R上单调递增,y≥0不恒成立,所以a>0,此时y′=ex-a=0,解得x=lna,当x<lna时,y′<0,函数单调递减,当x>lna时,y′>0,函数单调递增,所以要使y=f(x)-g(x)≥0恒成立,
只需ymin=a-alna-b≥0,…(12分)
所以b≤a-alna,ab≤a2-a2lna,a>0,
令G(x)=x2-x2lnx,x>0,则G′(x)=2x-2xlnx-x=x(1-2lnx),
令G′(x)=0解得$x=\sqrt{e}$,当$x∈({0,\sqrt{e}})$时,G′(x)>0,函数G(x)单调递增,
当$x∈({\sqrt{e},+∞})$时,G′(x)<0,函数G(x)单调递减,
所以当$x=\sqrt{e}$时,函数G(x)=x2-x2lnx取得最大值$\frac{e}{2}$,所以$ab≤{a^2}-{a^2}lna≤\frac{e}{2}$,
所以ab的最大值为$\frac{e}{2}$.…(16分)

点评 本题考查了利用导数研究在曲线某点处的切线方程,利用导数研究函数的单调性,同时考查了不等式恒成立问题,解题过程中运用了构造函数的思想,是综合性较强的一道导数应用题.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知a>0,设命题p:函数y=ax在R上单调递减,命题q:对任意实数x都有x2-3ax+1>0恒成立;若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个半径为1cm的球与正四棱柱的六个面都相切,则该正四棱柱的体积为8cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“0<α<π”是“x2+y2cosα=1表示椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}-1,}&{x≤0}\\{ln(x+1),}&{x>0}\end{array}}$,若f(x)≤ax,则a的取值范围是(  )
A.[1,2]B.[1,+∞)C.[2,+∞]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{AB}$与$\overrightarrow{AC}$满足$({\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}})•\overrightarrow{BC}$=0,且2$\overrightarrow{AB}•\overrightarrow{AC}$=|${\overrightarrow{AB}}$|•|${\overrightarrow{AC}}$|,则△ABC为(  )
A.三边都不等的三角形B.直角三角形
C.等腰不等边三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.执行如图的程序框图,若P=0.7,则输出的n=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知递增等差数列{an}满足a1•a4=7,a2+a3=8.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD,设梯形部件ABCD的面积为y平方米.
(I)设CD=2x(米),将y表示成x的函数关系式;
(II)求梯形部件ABCD面积y的最大值.

查看答案和解析>>

同步练习册答案