| A. | [1,2] | B. | [1,+∞) | C. | [2,+∞] | D. | (-∞,1] |
分析 分x>0,x≤0两种情况进行讨论,x>0时可知要使不等式恒成立,须有a≤0;x≤0时,再分x=0,x<0两种情况讨论,分离参数a后化为函数最值可求,注意最后对a范围取交集.
解答 解:(1)当x>0时,ln(x+1)>0,要使f(x)≤ax,即ln(x+1)≤ax恒成立,则此时a≥1.
(2)当x≤0时,-x2-1≤ax,
若x=0,则左边<右边,a取任意实数;
若x<0时,-x2-1≤ax可化为a≤-x-$\frac{1}{x}$,此时须满足a≤2.
综上可得,a的取值为[1,2],
故选A.
点评 本题考查函数恒成立问题,考查转化思想、分类讨论思想,考查学生分析解决问题的能力,恒成立问题常常转化为函数最值解决.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ac-bd=0 | B. | ad+bc=0 | ||
| C. | ac-bd≠0且ad+bc=0 | D. | ac-bd=0且ad+bc≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{10}}{10}$ | B. | -$\frac{\sqrt{10}}{10}$ | C. | ±$\frac{3\sqrt{10}}{10}$ | D. | ±$\frac{\sqrt{10}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com