精英家教网 > 高中数学 > 题目详情
8.已知数列{an}满足:a1=1,an+1=an+1,则数列{an}的通项公式an=n.

分析 利用等差数列的圆的及其通项公式即可得出.

解答 解:由数列{an}满足:a1=1,an+1=an+1即an+1-an=1,
∴数列{an}是等差数列,公差为1,首项为1.
∴an=1+(n-1)=n.
故答案为:n.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若log2x=4,则${x^{\frac{1}{2}}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an},a3=-1,a7=-9,则a5=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
(1)写出直线l的直角坐标方程与曲线C的普通方程
(2)设曲线C经过伸缩变换$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$,得到曲线C',设曲线C'上任一点M(x0,y0),求M到的直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.为了测某塔AB的高度,在一幢与塔AB相距30米的楼顶处测得塔顶的仰角为30°,塔基的俯角为45°,则塔AB的高度为30(1+$\frac{\sqrt{3}}{3}$)米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>0,设命题p:函数y=ax在R上单调递减,命题q:对任意实数x都有x2-3ax+1>0恒成立;若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=(x2-4x+1)ex在区间[-2,0]上的最大值是$\frac{6}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-1+\sqrt{3}t}\\{y=2+t}\end{array}}\right.$,在以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=3.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若P(-1,2),直线l与曲线C分别交于M,N两点,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}-1,}&{x≤0}\\{ln(x+1),}&{x>0}\end{array}}$,若f(x)≤ax,则a的取值范围是(  )
A.[1,2]B.[1,+∞)C.[2,+∞]D.(-∞,1]

查看答案和解析>>

同步练习册答案