·ÖÎö £¨1£©°ÑÒÑÖª¼«×ø±ê·½³ÌÁ½±ßƽ·½£¬¼´¿ÉÇóµÃÇúÏßCµÄÆÕͨ·½³Ì£¬ÏûÈ¥²ÎÊýt£¬¼´¿ÉÇóµÃÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³öÉìËõ±ä»»ºóµÄÇúÏßC'µÄ·½³Ì£¬ÔÙÇó³öÓëÒÑÖªÖ±Ï߯½ÐÐÇÒÓëÍÖÔ²ÏàÇеÄÖ±Ïß·½³Ì£¬ÓÉÆ½ÐÐÏß¼äµÄ¾àÀ빫ʽÇóµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓɦÑ=2£¬µÃ¦Ñ2=4£¬¼´x2+y2=4£®
¡àÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2=4£»
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t¢Ù}\\{y=1+\frac{\sqrt{3}}{2}t¢Ú}\end{array}\right.$£¬Óɢٵãºt=2$\sqrt{3}-2x$£¬
´úÈë¢ÚµÃ£º$y=1+\frac{\sqrt{3}}{2}£¨2\sqrt{3}-2x£©$£¬ÕûÀíµÃ£º$\sqrt{3}x+y-4=0$£»
£¨2£©ÓÉ$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$£¬µÃ$\left\{\begin{array}{l}{x=x¡ä}\\{y=\frac{1}{2}y¡ä}\end{array}\right.$£¬´úÈëx2+y2=4£¬µÃ$£¨x¡ä£©^{2}+£¨\frac{1}{2}y¡ä£©^{2}=4$£¬
¼´$\frac{£¨y¡ä£©^{2}}{16}+\frac{£¨x¡ä£©^{2}}{4}=1$£¬
¡àÇúÏßC'Êǽ¹µãÔÚyÖáÉϵÄÍÖÔ²£¬·½³ÌΪ$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$£®
ÉèÓë$\sqrt{3}x+y-4=0$ƽÐеÄÖ±Ïß·½³ÌΪ$\sqrt{3}x+y+m=0$£¬
ÁªÁ¢$\left\{\begin{array}{l}{\sqrt{3}x+y+m=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{16}=1}\end{array}\right.$£¬µÃ$7{x}^{2}+2\sqrt{3}mx+{m}^{2}-16=0$£®
ÓÉ¡÷=12m2-28£¨m2-16£©=0£¬½âµÃm=$¡À2\sqrt{7}$£®
µ±m=$2\sqrt{3}$ʱ£¬Ö±Ïß·½³ÌΪ$\sqrt{3}x+y+2\sqrt{3}=0$£¬´ËʱֱÏßÓëÍÖÔ²µÄÇе㵽ֱÏß$\sqrt{3}x+y-4=0$µÄ¾àÀë×î´ó£¬Îª$\frac{|2\sqrt{3}+4|}{\sqrt{£¨\sqrt{3}£©^{2}+{1}^{2}}}=2+\sqrt{3}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔ²µÄ¼«×ø±ê·½³ÌÓëÖ±ÏߵIJÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÁ½Æ½ÐÐÏß¼äµÄ¾àÀ빫ʽ£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}$ | B£® | 1 | C£® | $\sqrt{3}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1»ò3 | B£® | 1»ò5 | C£® | 3»ò5 | D£® | 1»ò2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [4£¬+¡Þ£© | B£® | £¨4£¬+¡Þ£© | C£® | [2£¬+¡Þ£© | D£® | £¨2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\sqrt{3}$ | C£® | $\sqrt{2}$ | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£ºx¡úy=$\frac{1}{6}$x | B£® | f£ºx¡úy=$\frac{1}{3}$x | C£® | f£ºx¡úy=$\frac{1}{2}$x | D£® | f£ºx¡úy=x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 50 | B£® | 45 | C£® | 36 | D£® | 35 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com