16£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=2£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©Ð´³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌÓëÇúÏßCµÄÆÕͨ·½³Ì
£¨2£©ÉèÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$£¬µÃµ½ÇúÏßC'£¬ÉèÇúÏßC'ÉÏÈÎÒ»µãM£¨x0£¬y0£©£¬ÇóMµ½µÄÖ±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©°ÑÒÑÖª¼«×ø±ê·½³ÌÁ½±ßƽ·½£¬¼´¿ÉÇóµÃÇúÏßCµÄÆÕͨ·½³Ì£¬ÏûÈ¥²ÎÊýt£¬¼´¿ÉÇóµÃÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³öÉìËõ±ä»»ºóµÄÇúÏßC'µÄ·½³Ì£¬ÔÙÇó³öÓëÒÑÖªÖ±Ï߯½ÐÐÇÒÓëÍÖÔ²ÏàÇеÄÖ±Ïß·½³Ì£¬ÓÉÆ½ÐÐÏß¼äµÄ¾àÀ빫ʽÇóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓɦÑ=2£¬µÃ¦Ñ2=4£¬¼´x2+y2=4£®
¡àÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2=4£»
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t¢Ù}\\{y=1+\frac{\sqrt{3}}{2}t¢Ú}\end{array}\right.$£¬Óɢٵãºt=2$\sqrt{3}-2x$£¬
´úÈë¢ÚµÃ£º$y=1+\frac{\sqrt{3}}{2}£¨2\sqrt{3}-2x£©$£¬ÕûÀíµÃ£º$\sqrt{3}x+y-4=0$£»
£¨2£©ÓÉ$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$£¬µÃ$\left\{\begin{array}{l}{x=x¡ä}\\{y=\frac{1}{2}y¡ä}\end{array}\right.$£¬´úÈëx2+y2=4£¬µÃ$£¨x¡ä£©^{2}+£¨\frac{1}{2}y¡ä£©^{2}=4$£¬
¼´$\frac{£¨y¡ä£©^{2}}{16}+\frac{£¨x¡ä£©^{2}}{4}=1$£¬
¡àÇúÏßC'Êǽ¹µãÔÚyÖáÉϵÄÍÖÔ²£¬·½³ÌΪ$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$£®
ÉèÓë$\sqrt{3}x+y-4=0$ƽÐеÄÖ±Ïß·½³ÌΪ$\sqrt{3}x+y+m=0$£¬
ÁªÁ¢$\left\{\begin{array}{l}{\sqrt{3}x+y+m=0}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{16}=1}\end{array}\right.$£¬µÃ$7{x}^{2}+2\sqrt{3}mx+{m}^{2}-16=0$£®
ÓÉ¡÷=12m2-28£¨m2-16£©=0£¬½âµÃm=$¡À2\sqrt{7}$£®
µ±m=$2\sqrt{3}$ʱ£¬Ö±Ïß·½³ÌΪ$\sqrt{3}x+y+2\sqrt{3}=0$£¬´ËʱֱÏßÓëÍÖÔ²µÄÇе㵽ֱÏß$\sqrt{3}x+y-4=0$µÄ¾àÀë×î´ó£¬Îª$\frac{|2\sqrt{3}+4|}{\sqrt{£¨\sqrt{3}£©^{2}+{1}^{2}}}=2+\sqrt{3}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔ²µÄ¼«×ø±ê·½³ÌÓëÖ±ÏߵIJÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÁ½Æ½ÐÐÏß¼äµÄ¾àÀ빫ʽ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª¸´ÊýZÂú×㣨1-i£©z=1+i£¬Ôò¸´Êý|Z|=£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®1C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªc£¾0£¬ÉèÃüÌâp£ºº¯Êýy=cxΪ¼õº¯Êý£®ÃüÌâq£ºµ±x¡Ê[$\frac{1}{2}$£¬2]ʱ£¬º¯Êýf£¨x£©=x+$\frac{1}{x}$£¾$\frac{1}{c}$ºã³ÉÁ¢£®Èç¹û¡°p»òq¡±ÎªÕæÃüÌ⣬¡°pÇÒq¡±Îª¼ÙÃüÌ⣬ÔòcµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{1}{2}]¡È[1£¬+¡Þ£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÖ±Ïߣ¨k-3£©x+£¨4-k£©y+1=0Óë2£¨k-3£©x-2y+3=0ƽÐУ¬ÄÇôkµÄֵΪ£¨¡¡¡¡£©
A£®1»ò3B£®1»ò5C£®3»ò5D£®1»ò2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®²»µÈʽ|x+3|-|x-1|¡Üa¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[4£¬+¡Þ£©B£®£¨4£¬+¡Þ£©C£®[2£¬+¡Þ£©D£®£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Æ½ÃæËıßÐÎABCDÖУ¬$¡ÏA={90¡ã}£¬¡ÏB=¡ÏD={60¡ã}£¬AB=\sqrt{3}£¬CD=1$£¬ÔòAD=£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®$\sqrt{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1£¬an+1=an+1£¬ÔòÊýÁÐ{an}µÄͨÏʽan=n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¼¯ºÏA=[0£¬6]£¬¼¯ºÏB=[0£¬3]£¬ÔòÏÂÁжÔÓ¦¹ØÏµÖУ¬²»ÄÜ¿´×÷´ÓAµ½BµÄÓ³ÉäµÄÊÇ£¨¡¡¡¡£©
A£®f£ºx¡úy=$\frac{1}{6}$xB£®f£ºx¡úy=$\frac{1}{3}$xC£®f£ºx¡úy=$\frac{1}{2}$xD£®f£ºx¡úy=x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚËùÓеÄÁ½Î»ÊýÖУ¬¸öλÊý×Ö´óÓÚʮλÊý×ÖµÄÁ½Î»Êý¹²ÓУ¨¡¡¡¡£©¸ö£®
A£®50B£®45C£®36D£®35

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸