精英家教网 > 高中数学 > 题目详情
6.在所有的两位数中,个位数字大于十位数字的两位数共有(  )个.
A.50B.45C.36D.35

分析 由题意知,本题是一个分类计数问题,由于本题要求个位数字大于十位数字,按个位数字是2,3,4,5,6,7,8,(9分)成8类,注意十位数字的选法,把所有情况相加得到结果.

解答 解:由题意知,本题是一个分类计数问题,
由于个位数字大于十位数字
∴按个位数字是2,3,4,5,6,7,8,(9分)成8类,
在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,
∴共有1+2+3+4++7+8=36(个).
故选C.

点评 本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
(1)写出直线l的直角坐标方程与曲线C的普通方程
(2)设曲线C经过伸缩变换$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$,得到曲线C',设曲线C'上任一点M(x0,y0),求M到的直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-1+\sqrt{3}t}\\{y=2+t}\end{array}}\right.$,在以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=3.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若P(-1,2),直线l与曲线C分别交于M,N两点,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个半径为1cm的球与正四棱柱的六个面都相切,则该正四棱柱的体积为8cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列四个命题:
①?x∈N*,C${\;}_{n}^{0}$+C${\;}_{n}^{1}$+C${\;}_{n}^{2}$+…+C${\;}_{n}^{n}$都是偶数;
②x=-1为函数f(x)=xex的极大值点;
③若x,y∈R,且x+y>2,则x,y中至少有一个大于1;
④复数($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2017的共轭复数是:$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i.
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“0<α<π”是“x2+y2cosα=1表示椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}-1,}&{x≤0}\\{ln(x+1),}&{x>0}\end{array}}$,若f(x)≤ax,则a的取值范围是(  )
A.[1,2]B.[1,+∞)C.[2,+∞]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.执行如图的程序框图,若P=0.7,则输出的n=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题“若m<x<m+3,则1<x<3”的逆命题为真命题,则实数m的取值范围为[0,1].

查看答案和解析>>

同步练习册答案