精英家教网 > 高中数学 > 题目详情
11.数列{an}是正项等比数列,{bn}是等差数列,且a5=b4,则有(  )
A.a3+a7≥b2+b6B.a3+a7≤b2+b6
C.a3+a7≠b2+b6D.a3+a7与b2+b6 大小不确定

分析 利用等比数列的性质、基本不等式的性质可得a3+a7≥2$\sqrt{{a}_{3}{a}_{7}}$=2a5,利用等差数列的性质可得b2+b6=2b4,利用已知a5=b4,即可得出.

解答 解:∵数列{an}是正项等比数列,{bn}是等差数列,
∴a3+a7≥2$\sqrt{{a}_{3}{a}_{7}}$=2a5,b2+b6=2b4,又a5=b4,当且仅当a3=a7时取等号.
则a3+a7≥b2+b6
故选:A.

点评 本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ex+ax+b在点(0,f(0))处的切线方程为x+y+1=0.
(1)求a,b值,并求f(x)的单调区间;
(2)证明:当x≥0时,f(x)>x2-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=4x3+2mx2+(m-$\frac{2}{3}$)x+n(m,n∈R)在R上有两个极值点,则m的取值范围为(  )
A.(-1,1)B.(1,2)C.(-∞,1)U(2,+∞)D.(-∞,1)U(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在(0,+∞)上的可导函数,其导函数为f′(x),且有2xf(x)+x2f′(x)>0,则不等式(x-2014)2f(x-2014)-4f(2)>0的解集为(  )
A.(2012,+∞)B.(0,2012)C.(0,2016)D.(2016,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给定下列四个命题:
①若$\frac{1}{a}$<$\frac{1}{b}$<0,则b2>a2
②已知直线l,平面α,β为不重合的两个平面,若l⊥α,且α⊥β,则l∥β;
③若-1,a,b,c,-16成等比数列,则b=-4;
④设a>b>1,c<0,则logb(a-c)>loga(b-c).
其中真命题编号是①③④(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线x+y=2k-1被圆x2+y2=1截得的弦长为$\sqrt{2}$,则k=0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=-x2-x+4 (x∈R)的递减区间是[$-\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左.右焦点分别为F1,F2,上顶点与两焦点构成的三角形为正三角形.
(1)求椭圆C的离心率;
(2)过点F2的直线与椭圆C交于A.B两点,若△F1AB的内切圆的面积的最大值为$\frac{9π}{16}$.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求椭圆C的方程,
(2)设A(-4,0),过点R(3,0)作与x轴不重合的直线L交椭圆C于P,Q两点,连接AP,AQ分别交直线x=$\frac{16}{3}$于M,N两点,若直线MR、NR的斜率分别为k1,k2,试问:k1 k2是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

同步练习册答案